Разработки

СУШКА... ВОДОЙ

19.05.2015

СУШКА... ВОДОЙВ этом номере мы знакомим молодых новаторов, участников операции «Внедрение», с необычным методом сушки, разработанным в Николаеве. По нашей просьбе о нем рассказывают авторы этой новой технологии, которая не только сокращает производственный цикл, но и обеспечивает высокое качество древесины.

 

Наиболее, распространенный способ сушки древесины — путем термической обработки, способствующей удалению избыточной влаги. Известны различные варианты такого обезвоживания: в среде нагретого газа, воздуха, перегретого пара, инфракрасным облучением, в поле токов высокой частоты.
 
Чаще всего применяется сушка в среде нагретого воздуха (пара) или газа. Она проводится в камерах, оборудованных нагревательными приборами, системой циркуляции воздуха, аппаратурой для поддержания температурновлажностных параметров среды.
 
Такие камеры обычно называют конвективными, поскольку в них нагрев древесины и сушка происходят благодаря циркуляции (конвекции] горячего воздуха.
 
Но если создается поток нагретого газа или воздуха, то, естественно, возникает и сопротивление этому потоку, которое оказывает штабель древесины. Значит, необходимо учитывать при укладке заготовок и аэродинамику сушильного процесса. Словом, безобидное на первый взгляд понятие «сушка» связано с большим многообразием проблем.
 
Теперь коснемся вопроса о качестве высушиваемой древесины. Конвективный профев воздействует в первую очередь на наружные слои древесины. Поэтому они воспринимают наибольшее количество тепла, температура здесь повышается быстрее, что приводит к образованию усадочных, растягивающих и сжимающих деформаций и в конечном итоге к браку высушенной древесины.
 
Поэтому достижение равномерности прогрева каждой заготовки и всего штабеля в целом — серьезная технологическая трудность. Особенно остро стоит проблема сушки толстомерной древесины твердолиственных пород: дуба, бука, граба. Она широко используется для изготовления различных машиностроительных конструкций, деталей, особой тары, приборов, специальной мебели; все чаще применяется она для отделки интерьера современных зданий.
 
Рис. 1. Ванна для сушки
 
Рис. 1. Ванна для сушки (железобетон, 2900Х1200Х Х2300 мм; электролит — 3% раствор NaCl или KCl):
 
1 — корпус, 2 — бак для горячей воды, 3 — пластинчатые электроды, 4 — древесина, 5 — водяной насос, 6 — теплообменник для регулирования температуры воды в ваннах, 7 — воздушные вентиляторы, включаемые в период остывания древесины, 8 — электронагреватели для регулирования температуры воздуха, 9 — цилиндрические затворы, герметизирующие ванну (в сечении Б—Б вагонетки с древесиной не показаны).
 
Рис. 2. Схема электрокинетической установки
 
Рис. 2. Схема электрокинетической установки:
 
1 — выключатель-автомат, 2 — стабилизатор напряжения, 3 — автотрансформатор, 4 — термостат, 5 — кран, 6 — реле, 7 контактный термометр, 8 — термопара, 9 — электрод, 10 — датчик давления, 11 — груз, 12 — воздуходув, 13 — манометры, 14 — весы, 15 — сосуд Дюара, 16 — потенциометр с переключателем, 17 — деревянный брус, 18 — ванна (диэлектрик), 19 — нагреватель для воды.
 
Исстари такие заготовки сушили под навесами на воздухе — процесс занимал несколько лет. Ненамного быстрее и выдерживание в специальных помещениях, где постоянно поддерживается необходимая температура и контролируется влажность окружающей среды. В сушильных камерах возможно обезвоживание только тонких заготовок или досок, однако оно длится тоже долго: один-два месяца.
 
Наши поиски высококачественного и интенсивного процесса привели к мысли о возможности нагрева и сушки такой древесины... в воде или электропроводящих растворах.
 
Обезвоживание в воде? Да! Это интригующее обстоятельство имеет достаточно обоснованный смысл. Оказалось,, что равномерный и одновременный объемный нагрев древесины вполне осуществим под действием тока в жидкой электропроводящей среде между пластинчатыми электродами (рис. 1). Электроток почти беспрепятственно (с крайне малым переходным сопротивлением) проникает в толщу влажной древесины, у которой электрическое сопротивление мало, и за счет джоулевых потерь нагревает ее.
 
Вода, правда, также нагревается. Однако, регулируя этот нагрев с помощью теплообменника, легко выровнять температуры материала и жидкости. А это значит, что создается надежная гарантия равномерного прогрева и, следовательно, сведения до минимума опасности растрескивания заготовок.
 
Но нагреть древесину до необходимого температурного состояния лишь полдела; вторая половина проблемы — отвод из нее влаги.
 
Возможны различные технологические варианты осуществления этого процесса. Среди них больше всего привлекают два. Первый — создание положительного температурного перепада в нагретой заготовке и окружающей жидкости. Тогда изнутри по направлению к поверхности древесины будут действовать две силы — диффузия тепла и диффузия влаги. Для этого достаточно с помощью теплообменника поддерживать температуру воды несколько ниже, чем на поверхности древесины.
 
Второй вариант: после нагрева в воде почти до 90° древесину охлаждают на воздухе при температуре от 25 до 38°. Причем подобные циклы повторяются неоднократно. Здесь тепло и влага будут направлены также к периферийным слоям. Им будет помогать еще одна движущая сила — термобародиффузия, образующаяся за счет избыточного по сравнению с атмосферным давления.
 
Рис. 3. Участок электрокинетической сушки и пропитки древесины.
 
Рис. 3. Участок электрокинетической сушки и пропитки древесины.
 
Вот что показали исследования в промышленно-лабораторных условиях. При самом жестком режиме, которому соответствовала температура срединной области дубового бруса 100° и температура окружающей воды 95— 97°, процесс обезвоживания шел интенсивно, но сопровождался сильным внутренним растрескиванием бруса. Применение же более мягких режимов: температура бруса от 60 до 95° и воды соответственно 50—80° — показало, что удаления влаги практически не происходило.
 
Тогда было решено провести испытания по второму варианту.
 
Оказалось, что если нагреть брусок в воде до 75—95°, а потом поместить его в воздушную среду с температурой 26—30°, то брусок в процессе остывания отдает влагу, заметно обезвоживаясь при повторении этого цикла. Этот способ, получивший название осциллирующего температурного режима сушки, был одобрен Научно-исследовательским институтом тепло- и массообмена АН БССР.
 
В результате экспериментов определены режимы электрокинетической сушки, сведенные в таблицу. Качество материалов после окончания процесса обезвоживания по этим режимам удовлетворяло всем техническим условиям й требованиям: ни наружных, ни внутренних трещин в древесине не было.
 
Необходимо отметить, что период обезвоживания бруса от 80 до 15% влажности может быть резко сокращен, если строго выдерживать температуру воздушной среды 28—30° и обеспечить периодическую циркуляцию воздуха. Эти условия могут быть получены в промышленной установке.
 
Детальное изучение процесса, связанного с применением осциллирующих режимов, определило схему опытно-промышленной установки, приведенную на рисунке 2. Она управляется с одного пульта и может быть полностью автоматизирована.
 
ТАБЛИЦА
 
ТАБЛИЦА
 
Говоря о двух вариантах электрокинетической сушки, следует заметить, что первый из них, с применением жестких температурных режимов обезвоживания материалов в водяной среде, может быть успешно использован для сушки тонкомерной твердолиственной древесины, а также других капиллярно-пористых материалов, которые по своей структуре не подвержены растрескиванию, или если последнее обстоятельство не имеет практического значения.
 
Дальнейшие производственные испытания процессов электрокинетической сушки древесины твердолиственных пород, а также других материалов, проведенные Институтом тепло- и массообмена АН БССР, показали, что от начального влагосодержания 60—80 % до конечного 8—10% длительность сушки может быть сокращена до 180— 200 часов. Расход электроэнергии при этом составляет 1400—2000 ккал/кг испаренной влаги.
 
Интересно, что подобный процесс нагрева и сушки можно совмещать с процессом пропитки, причем не только древесины твердолиственных, но и хвойных пород. Такая схема производственного участка показана на рисунке 3.
 
Представляется весьма эффективным и экономичным совмещение в одной установке двух самостоятельных, тесно связанных и обусловливающих друг друга процессов.
 
Г. М. БАЛАБАЕВ, С. Г. РОМАНОВСКИЙ




Рекомендуем почитать
  • ВИНТ? ЭТО НЕПРОСТО
    ВИНТ? ЭТО НЕПРОСТОТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ДЕРЕВЯННЫХ ВОЗДУШНЫХ ВИНТОВ. Аэросани, аэроглиссеры, всевозможные аппараты на воздушной подушке, экранопланы, микросамолеты и микроавтожиры, различные вентиляторные установки и другие машины не могут действовать без воздушного винта (пропеллера). Поэтому каждый энтузиаст технического творчества, задумавший построить одну из перечисленных машин, должен научиться изготовлять хорошие воздушные винты.

Добавить комментарий

Защитный код
Обновить

ПОДПИСЫВАЙТЕСЬ VK FB


Нашли ошибку? Выделите слово и нажмите Ctrl+Enter.