Мы вынуждены исказить текст в ответ на заблокированную вами рекламу.
Друзья! Проект modelist-konstruktor.com существует благодаря рекламе. Просьба добавить сайт в исключения блокировщика и обновить страницу.
ВЕРХОМ НА ВЕНТИЛЯТОРЕ

ВЕРХОМ НА ВЕНТИЛЯТОРЕ

Машины и аппараты на воздушной подушке (МВП и АВП) с каждым годом все больше привлекают внимание конструкторов всего мира. И это неудивительно. Использование заложенного в них принципа, особенно для вездеходных транспортных машин, позволяет получить невиданные для бездорожья проходимость и скорость движения. Они могут беспрепятственно и одинаково легко двигаться по шоссейным и проселочным дорогам, топкой трясине, по водной поверхности и вспаханному полю.

В последнее время АВП становятся популярными и у конструкторов-любителей. Ведь вездеход на воздушной подушке по своему устройству значительно проще разнообразных колесных, гусеничных, шнековых и прочих машин. В нем отсутствуют сложные трансмиссии от двигателя к движителю или такие элементы этих движителей, как, например, колеса, гусеницы.

Одноместная МВП разработана и испытана в Ленинградском Дворце пионеров имени А. А. Жданова; в ее создании активно участвовали ребята, занимающиеся в машиностроительной лаборатории Дворца. Первая модель машины участвовала в одном из парадов пионеров на Дворцовой площади в Ленинграде (см. фото). Конструкция представлена на Всесоюзную заочную выставку «Твори, выдумывай, пробуй» (см. № 3, 1975 г.), и мы помещаем ее сегодня на наш выставочный стенд «ТВП-75».

ВЫБОР СХЕМЫ АВП

На небольших АВП получили распространение в основном две наиболее простые для выполнения схемы образования воздушной подушки: купольная — рисунок 1 (а и б) и сопловая (в и г).

Высота подъема Н, определяющая в значительной степени основные параметры машины — ее проходимость по неровностям дороги и допустимую поступательную скорость, — зависит от веса машины и избыточного давления воздуха, нагнетаемого вентилятором под машину. В купольной схеме эта высота (до жесткой части корпуса) может быть увеличена установкой эластичной «юбки» (см. рис. 1б).

В сопловой схеме роль такой «юбки» выполняет сам воздух, выходящий из круговой щели: часть его «скапливается» под днищем, давя на него, за счет чего подъем аппарата по сравнению с обычной купольной схемой увеличивается в 1,3—1,5 раза. Сопловая схема с одним (см. рис. 1) или двумя контурами (г) обладает и значительно большей устойчивостью по сравнению с купольной схемой. Вот почему для обеспечения хороших ходовых качеств задуманной машины на воздушной подушке членами машиностроительной лаборатории нашего Дворца пионеров была принята простая в конструктивном отношении одноконтурная схема с одним вентилятором (рис. 2).

РАСЧЕТ АППАРАТА

Вентилятор АВП должен непрерывно подавать воздух под его днище, тогда за счет избыточного давления машина приподнимается и между ее днищем и опорной поверхностью образуется щель. Воздух начинает истекать через нее со скоростью

где Δ Р — избыточное давление в подушке в кг/м2,

— плотность воздуха у земли, равная 0,125 кг·см2

(формула дает погрешность до 5% при V ≤ 100 м/с).

При равенстве объема поступающего от вентилятора воздуха и выходящего из-под днища аппарат повиснет на высоте Н = KQ/ПV(м) (для купольной схемы).

Здесь Q — секундный расход воздуха в м3/с, П — периметр днища в м, V — скорость истечения воздуха в м/с, К — коэффициент, равный 1,25—1,6 (учитывает увеличение высоты подъема вездехода за счет сужения струи истекающего из щели потока воздуха). Размеры машины определяются, исходя из необходимой площади днища S при ориентировочно заданном весе машины:

S = G/P (м2).

где G — ходовой вес вездехода в кг, Р — давление воздуха в подушке в кг/м2. Последнее будет всегда меньше давления, развиваемого вентилятором.

ВЫБОР ДВИГАТЕЛЕЙ

Согласно избранной схеме машины на ней устанавливаются два двигателя внутреннего сгорания: на привод вентилятора и для маршевой установки. Двигатели использовались воздушного охлаждения.

Для привода вентилятора одноместного АВП достаточна мощность двигателя 8—14 л. с. Это могут быть одноцилиндровые мотоциклетные моторы с рабочим объемом 175—350 см3. Двигатель устанавливается в воздушном потоке, отбрасываемом вентилятором.

ВЕРХОМ НА ВЕНТИЛЯТОРЕ   ВЕРХОМ НА ВЕНТИЛЯТОРЕ

Рис. 1. Схема образования воздушной подушки:

 

а, б — купольная; в, г — сопловая.

 

Рис. 2. Общая схема компоновки машины:

 

1 — руль поворота, 2 — воздушный винт, 3 — маршевый двигатель, 4 — корпус машины, 5 — кресло водителя, 6 — ролики кресла, 7 — рукоятка управления, 8 — спрямляющий аппарат вентилятора, 9 — вентилятор, 10 — двигатель вентилятора, 11 — сопло, 12 — днище машины.

 

Рис. 3. Блок вентилятора:

 

1 — магнето, 2 — выхлопная труба, 3 — двигатель, 4 — баидаж с губчатой резиной, 5 — рама вентилятора, 6 — резиновые подушки, 7 — рама кузова АВП.

 

Рис. 4. Вентилятор в сборе:

 

1 — муфта резиновая, 2 — тубус-проставка, 3 — установочный вкладыш, 4 — корпус подшипников вала винта, 5 — обтекатель, 6 — шкив пускового шнура, 7 — ступица, 8 — лопасть, 9 — ограждение винта, 10 — опора. 11 — спрямляющий аппарат.

 

Рис. 5. Маршевый двигатель в сборе:

 

1 — руль поворота, 2 — винт, 3 — двигатель, 4 — рама, 5 — ограждение винта, 6 — резиновые подушки, 7 — втулка, 8 — ось руля.

 

Рис. 6. Ступица винта:

 

1 — обтекатель, 2 — шкив пускового шнура, 3 — ступица, 4 — лопасть винта, 5 — корпус подшипников вала винта, 6 — муфта.

 

Рис. 7. Система управления:

 

1 — штурвал, 2 — трос газа, 3 — колонка штурвала, 4 — привод кресла, 5 — трос руля поворота, 6 — руль.

 

Рис. 8. Несущий каркас корпуса.

 

Рис. 9. Каркас днища.

Ребра охлаждения цилиндра обтачиваются до круглой формы. Размер оребрения головки цилиндра подгоняется по размеру ребер цилиндра. Головка устанавливается ребрами вдоль потока воздуха.

С двигателя удаляется коробка скоростей. Для зажигания устанавливается стандартное магнето.

Мотор для маршевой установки, служащий для привода воздушного винта, может выбираться в более широком диапазоне мощностей.

От него будет зависеть поступательная скорость машины и преодолеваемые ею уклоны. Переделки двигателя преследуют те же цели и аналогичны приведенным выше.

ВЕНТИЛЯТОР

Вентилятор, установленный на нашем вездеходе, был рассчитан и проверен в машиностроительной лаборатории Дворца пионеров. Его параметры следующие: тип — осевой, одноступенчатый, диаметр ротора — 600 мм, шаг — 300 мм, число лопастей ротора — 10. Создаваемое вентилятором давление воздуха — 100 кг/м2.

Рабочие обороты ротора вентилятора — 4000—6000 об/мин, расход воздуха — 4—6 м3/с. Потребляемая мощность — 8—14 л, с.

Вся вентиляторная установка выполнена в виде отдельного агрегата (рис. 3), круглое основание его изготовлено из стальной тонкостенной трубы с приваренными к ней тремя ушками. Этими ушками через резиновые подушки агрегат крепится к кольцу на каркасе (рис. 8) вездехода.

Лопасти вентилятора установлены в защитном ободе, имеющем внутренний диаметр 602 мм. Продольная ось обода расположена под углом 30° к горизонтальной плоскости. В ободе размещается спрямляющий аппарат, уменьшающий завихрения потока воздуха за вентилятором и значительно снижающий потери давления воздуха. Спрямляющий аппарат вмонтирован в обод и имеет 15 лопаток, расположенных под углом 15° в сторону вращения ротора вентилятора.

Лопасти спрямляющего аппарата одновременно являются опорными стойками, центрирующими двигатель и ротор вентилятора. На них крепятся: два фланцевых корпуса, корпус вала ротора вентилятора, посаженный на двух радиально-упорных шариковых подшипниках, а также корпус картера двигателя. Сам двигатель, кроме того, закрепляется на раме, состоящей из опорных трубчатых стоек с приваренными к ним кронштейнами (рис. 3, вид А).

Хвостовик вала двигателя соединен с валом ротора вентилятора через эластичную муфту. Она имеет резиновые вкладыши, что обеспечивает плавность работы ротора, уничтожает вредные вибрационные нагрузки и компенсирует неточности сборки соединения. На конусном хвостовике вала ротора вентилятора муфта закрепляется на шпонке, предохраняющей о‘т проворачивания.

Ступица на конусе крепится специальной гайкой. К ступице болтами прикреплен шкив запуска двигателя, имеющий проточенную канавку для укладки в ней пускового шнура.

Лопасти ротора вентилятора выполнены профилированными, с углами атаки: у ступицы — 30°, на концах — 9°. Лопасти крепятся на ступице установочными вкладышами (см. рис. 4).

Для использования динамического напора встречного потока воздуха заборное сопло вентилятора направлено (с небольшим наклоном) вперед.

МАРШЕВАЯ УСТАНОВКА

Как и блок вентилятора, маршевая моторная установка (рис. 5) представляет собой самостоятельный агрегат, закрепляемый на раме вездехода с помощью приваренных шпилек, на которые устанавливается на резиновых втулках основание агрегата.

Двигатель крепится на трубчатых стойках, имеющих приваренные кронштейны с отверстиями под болты крепления картера.

В плоскости воздушного винта установлено трубчатое кольцо-ограждение. В его верхней части находится кронштейн для крепления оси воздушного руля поворота; другой конец оси упирается в основание агрегата. Внизу на оси руля крепится качалка управления.

 

Передача от двигателя на винт — прямая, через эластичную муфту (рис. 6). Вал воздушного винта установлен на двух радиально-упорных шариковых подшипниках.

 

Воздушный винт своей ступицей крепится ка конусный хвостовик вала винта на шпонке и затягивается специальным болтом с опорной шайбой. Со ступицей винта соединен корпус шкива с канавкой для пускового шнура и обтекателем.

 

Воздушный винт маршевой установки — двухлопастный, деревянный, Ø 700 мм. Винт имеет шаг 600 мм.

 

Потребляемая мощность — до 8 л. с. при 4000—4200 об/мин. При этом обеспечивается тяговое усилие в 25—27 кг.

 

Системы управления вездеходом показаны на схеме (рис. 7). Поступательное движение машины обеспечивается ее наклоном вперед за счет перемещения центра тяжести. Для этого кресло водителя устанавливается на роликах и имеет привод от ручки управления, фиксирующей его в нужном положении.

 

На рукоятку управления вынесены и рычаги управления двигателями — вентилятора и маршевой установки.

 

ВЫБОР МАТЕРИАЛОВ ДЛЯ ПОСТРОЙКИ

 

Чем легче вездеход, тем выше он будет подниматься при той же мощности двигателя вентилятора, значит, тем лучше будет его проходимость. В то же время чем прочнее будет его конструкция, тем больше будет срок службы и надежность. С учетом этого для постройки наиболее подходящий материал — алюминиевые сплавы. Из-за сильной вибрации конструкции при работе двигателей (вследствие малой жесткости) самым надежным способом соединения деталей будет сварка. Но для алюминиевых сплавов, особенно высокопрочных, ее выполнение сопряжено с большими трудностями. Из этих соображений при постройке вездехода были использованы следующие материалы. Рама вездехода (см. рис. 8), каркас днища (рис. 9), крепления двигателей — тонкостенные трубы из стали 30ХГСА. Днище — пенопласт, оклеенный перкалью на клею ПВА. Корпус — пропитанная клеем ПВА перкаль на проволочном каркасе. Вентилятор и спрямляющий аппарат — алюминиевый сплав Д16Т, воздушный винт — блочный, деревянный.

 

ИЗГОТОВЛЕНИЕ

 

Точность выполнения деталей рамы и корпуса сравнительно невысокая. Наиболее трудоемкой частью является вентилятор. При его изготовлении следует обращать внимание на плотную посадку лопастей в ступице. Все детали, находящиеся в воздушном потоке, полируются.

 

Сборка деталей должна производиться с особой тщательностью. Для уменьшения вибраций от двигателей их рамы устанавливаются на мягких резиновых амортизаторах — втулках.

 

РЕЗУЛЬТАТЫ ХОДОВЫХ ИСПЫТАНИЙ

 

У первого варианта нашего вездехода на подушке вентилятор приводился мотоциклетным двигателем с рабочим объемом цилиндра 175 см3. Для воздушного винта, имевшего Ø 600 мм, использовали двигатель от мопеда с рабочим объемом цилиндра 50 см3. Поэтому винт развивал тяговое усилие всего 10 кг. При этих данных были получены следующие параметры машины: скорость — до 30 км/ч, вес конструкции — 45 кг, полезная нагрузка — до 100 кг, высота подъема (Н) при весе водителя 70 кг — 4 см на месте и 7— 8 см на ходу.

 

Давление воздуха в подушке составляло 28 кг/м2 (при площади опоры 4,3 м2).

 

В дальнейшем вездеход был переделан. На привод вентилятора был поставлен двигатель с рабочим объемом цилиндра 350 см3, а для маршевой установки — двигатель с рабочим объемом цилиндра 175 см3.

 

Благодаря этому параметры вездехода резко изменились: скорость возросла до 60—70 км/ч, высота подъема увеличилась до 6 см на месте и 11 — 12 см на ходу, давление воздуха в подушке стало 46 кг/м2. Вес вездехода, правда, теперь составлял 90 кг при запасе топлива 10 л.

 

В настоящее время проводится очередная модернизация конструкции вездехода. Для понижения центра тяжести двигатель вентилятора будет опущен на днище. Передачу на вентилятор предполагается выполнить клиновидными ремнями с увеличением оборотов ротора до 6000 об/мин. Это позволит более полно использовать мощность двигателя. Будет облегчен корпус, установлен кольцевой предохранительный бампер и произведен ряд других мелких доработок.

 

Б. АЛЕКСАНДРОВ, Ю. ШУМИХИН, Ленинград

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

Рекомендуем почитать

  • МОТОНАРТЫ ОТ «А» ДО «Я»МОТОНАРТЫ ОТ «А» ДО «Я»
    Что должен знать любитель, принимающийся за создание «зимнего мотоцикла»? Типовая конструкция (рис. 1). Обратите внимание на необходимость как можно ниже расположить центр тяжести и...
  • «МИНИМАКС»: СЕМЬ ЛЕТ В ПУТИ«МИНИМАКС»: СЕМЬ ЛЕТ В ПУТИ
    Описание микроавтомобиля «Минимакс», построенного инженером П. С. Заком («М-К» № 1 за 1975 г.), до сих пор привлекает любителей автоконструирования. Поток писем не прекращается....
Тут можете оценить работу автора:

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: