В ЛУЧАХ БЕККЕРЕЛЯ

В ЛУЧАХ БЕККЕРЕЛЯ

Радиация. Казавшаяся многим еще совсем недавно невообразимо далекой от повседневности, воспринимавшаяся скорее как научный термин или козырной довод в былых спорах сверхдержав за ядерное превосходство, чем реальная, грозящая всему живому на земле опасность, она все чаще начинает показывать свои когти и тяжелый нрав. Здесь и трагедия Чернобыля, и экологическая загрязненность других районов, и связанные с этим мутационные процессы…

(Окончание. Начало см. в предыдущем номере журнала)

Коварство всепроникающей радиации довелось испытать на себе и первооткрывателю радиоактивности Анри Беккерелю. Было это в апреле 1902 года. Готовясь к совместному выступлению на научной конференции, Пьер Кюри передал Беккерелю несколько дециграммов препарата, содержащего чрезвычайно активный радий. Предназначавшееся для последующей демонстрации вещество находилось в герметически закрытой маленькой стеклянной трубочке, завернутой в бумагу. Недолго думая Беккерель положил все это в правый угол своего жилетного кармана. Там препарат и пролежал около 6 часов, вплоть до начала конференции.

А через 10 дней — тревожный симптом. На коже у Беккереля появилось вдруг багрово-красное пятно. Причем размеры, очертания и расположение последнего позволили ученому сделать однозначный вывод: объяснение случившемуся следует искать в природных свойствах оказавшегося столь каверзным препарата. Вернее — в особом физиологическом воздействии радия и ему подобных (радиоактивных) веществ.

На следующий (после появления на коже) день пятно у Беккереля сделалось более темным. Затем образовалась язва. В течение месяца ее лечили как простой ожог, но заживление шло очень вяло, Медленно. В конце концов язва сошла, оставив после себя довольно-таки заметный рубец.

Можно лишь подивиться бесшабашной смелости ученого, носившего сверточек с радием в жилетном кармане. Но это была смелость от неведения. Ведь о лучевой болезни тогда ничего, по сути, не знали.

Теперь вот просветились. И даже старшеклассник подчас может вспомнить: тяжесть поражения от ионизирующих излучений определяется в основном величиной полученной дозы облучения. За основную же единицу последней принят 1 рентген. Это такое воздействие излучения, которое создает в 1 см3 сухого воздуха (при температуре 0°С и давлении 760 мм рт. ст.) около 2 миллиардов пар ионов.

Применяются и меньшие единицы измерения: милли- и микрорентгены. Ну а доза облучения, отнесенная ко времени, за которое она получена, называется мощностью дозы. Измеряется специальными приборами. Причем в таких единицах, как рентген/ час, рентген/минута и рентген/секунда.

Совершив для начала столь краткий экскурс в историю, предлагаем обезопасить себя, смастерив для обнаружения радиоактивных излучений и определения их интенсивности, ведения контроля за радиоактивной обстановкой на местности, измерения мощностей доз в диапазоне от естественного радиоактивного фона до величины, стократно превышающей его, малогабаритный радиометр. В необходимости заиметь у себя такой ценный прибор вряд ли кто, думается, будет сегодня сомневаться. Тем более что этот радиометр можно с успехом применять и в гамма-дефектоскопии, других областях практических и научных исследований.

Принципиальная электрическая схема прибора (см. рис.) довольно-таки проста. Воспринимающим элементом здесь, как и во многих других портативных аналогах, служит газоразрядный счетчик СТС-5. Ну а если не удастся раздобыть указанный тип детектора (датчика) ионизирующих излучений — не беда. Схема разработана таким образом, что СТС-5 можно заменить другим газоразрядным счетчиком. Например, СБМ-20, имеющим приемлемые для использования в портативной конструкции габариты и соответствующее (номинальное) рабочее напряжение. Сделать наиболее удачный выбор при замене поможет, думается, таблица, где приведены основные параметры наиболее распространенных и популярных типов счетчиков.

Принципиальная электрическая схема малогабаритного самодельного радиометра, где детектором ионизирующих излучений служит счетчик Гейгера-Мюллера.
Принципиальная электрическая схема малогабаритного самодельного радиометра, где детектором ионизирующих излучений служит счетчик Гейгера-Мюллера.

Устройство и принцип действия таких детекторов (датчиков) рассматривались в предыдущем номере «М-К». Подчеркнем лишь, что под действием ядерных излучений происходит ионизация газа, находящегося внутри баллона счетчика. А при достаточно высокой напряженности поля (80 кВ/м) происходит и лавинообразный разряд, в результате которого возникают процессы, усиливающие первичный ионизационный эффект во много раз.

Напряженность поля внутри счетчика создается высоковольтным источником. В нашем конкретном случае это преобразователь напряжения, выполненный по схеме однотактного автогенератора, работающего с частотой около 1000 Гц, и умножитель, повышающий выпрямленное и со ста до четырехсот В. Причем последнее можно регулировать соответствующей подборкой величины резистора R4.

Плата (с указанием расположения на ней элементов монтажа)
Плата (с указанием расположения на ней элементов монтажа).

Индикация разряда — световая и с помощью микроамперметра. Напряжение на входе VT1 стабилизировано простейшим формирователем импульсов (двусторонним стабилитроном КС210Б) на уровне 10 вольт. Ключевая ступень, работая на составном транзисторе VТ1—VТ2, усиливает эти импульсы.

Диапазон измеряемых мощностей излучений — 0,001…2 мР/ч. Действует радиометр безотказно. И, как показывает практика, работая от аккумуляторов, потребляет ток не более 5 мА.

Конструкция и детали таковы, что практически все устройство удается разместить в металлическом корпусе размерами 125x35x25 мм. Выносным элементом является один лишь газоразрядный счетчик. Причем располагается он в трубочке из пластмассы диаметром 15 мм и длиной 110 мм. В боковой стенке корпуса прибора сделаны прорезь для микроамперметра 30×14 мм и отверстие для светодиода Ø5 мм. В торце же просверлено отверстие Ø8 мм — для выключателя SА1 типа МТ1.

Радиометр в сборе
Радиометр в сборе: 1 — корпус, 2 — аккумулятор Д 0,1 (4 шт.) в отсеке электропитания, 3 — светодиодный индикатор, 4 — стрелочный индикатор, 5 — датчик (газоразрядный счетчик в самодельном кожухе из пластиковой трубки), 6 — гибкий двухжильный провод (от слухового аппарата), 7 — крышка (крепление ее к корпусу винтами условно не показано), 8 — тумблер включения электропитания.

Отсек электропитания образован из обоймы (латунь толщиной 0,3 мм) размером 20x20x30 мм; она стянута витками одножильного провода. В корпусе и крышке просверлены по 2 отверстия Ø3,5 мм. К стенке корпуса под ними припаяно по гайке М3. С помощью соответствующих винтов крышка крепится к коробке.

В радиометре применены сопротивления МЛТ, конденсаторы КЛС, К-50-16, ЭТО. Источник питания — 4 аккумулятора Д 0,1, соединенных последовательно. Трансформатор Т1 — самодельный. Он намотан на сердечнике из феррита М2000 НМ (Ш-образной формы) сечением около 25 мм2. Обмотки содержат: II — 30 витков, III —35 витков провода ПЭЛШО—0,15, I — 1800 витков ПЭЛШО—0,07. Укладка провода — внавал.

Таблица. Основные параметры газоразрядных счетчиков, широко используемых в радиолюбительских конструкциях.

Тип

счетчика

Номинальное

рабочее

напряжение, В

Протяженность плато, В, не менееНаклон плато, %/В, не болееСобственный фон счетчика, имп/с, не болееРадиационная чувствительность, имп/мкРВремя нечувствительности, мкс (при Uр=400 В)Амплитуда выходного импульса, В, не менееРабочий температурный интервал, °СФорма и размеры входного окна, мм (толщина слюды окна, мкм)Г абариты счетчика, мм, диам. х длина (длина х шир. х выс.)Масса, г
СБМ-94501500,150,1312300…+506×100055
СБМ-104001000,150,131264—50…+606×250,7
СБМ-114001000,150,133,5200…+5012×25727
СБМ-124001000,150,132,50…+5012×18728
СБМ-194001000,1231025050—60…+7019×19525
СБМ-204001000,117819050—60…+7011×10810
СБМ-214001000,150,27,53250—60…+706×210,7
СБМ-304001000,150,815018050—30…+5018×10825
СБМ-314001000,20,152019050—30…+5010×388
СБМ-324001000,150,510019050—30…+5010×10510
СБМ-32-К4001000,150,47019050—30…+5010×859
СБТ-7380700,1250,620—40…+5021 (10…11)31×7225
СБТ-9380800,1250,174010040—50…+505 (4…5)12×746
СБТ-10А390800,32,13331255—60…+6555×55 (12…17)(83x67x37)150
СБТ-11390800,50,7502510—40…+5033×17 (9…11)(55,5x29x23,5)30
СГМ-18*4001000,1251—40…+6016×140
СГМ-19*4001000,1251—40…+6024×169
СИ-8Б390800,32350…50020—40…+5065(14…17)82×31100
СИ-13Б4002000,250,6956530—50…+6032(13…14)49×2655
СИ-14Б4002000,2523009030—50…+6064(13…14)84×26133
СИ-19Г3901000,1250,33—40…+5011×9010
СИ-20Г4001000,1251—40…+5019×18035
СИ-21Г4001000,1251,3—40…+5019×26545
СИ-22Г3901000,1251,354012050—50…+7019×22040
СИ-23БГ4001000,152200…40080—45…+6019×19525
СИ-24БГ4001000,150,550…100100—45…+6011×11111
СИ-29БГ4001000,1250,54895—60…+7010,3×61,55,5
СИ-34Г390800,30,0810—40…+5010×573,5
СИ-37Г3901000,250,2550—50…+8510×664,5
СТС-5390800,1250,45—40…+5012×110
СТС-6390800,1251,83—40…+5022×197

В конструкции использован микроамперметр типа М476 с током полного отклонения 100 мкА. Этот стрелочный прибор зашунтирован сопротивлением R3 величиной 20—50 Ом. Ну а что касается транзисторов, указанных на принципиальной схеме, то они могут быть с любыми буквенными индексами.

Правильно собранная схема начинает работать сразу. При этом загорается светодиод и отклоняется стрелка прибора на 5—15 мкА. Оно и понятно: ведь существует естественный радиоактивный фон, на который наш радиометр и реагирует своими 20…40 вспышками в минуту. Приближение же радиоактивного препарата к счетчику вызывает рост показаний у светодиода и аналогового измерительного прибора. Напряжение преобразователя регулируется сопротивлением R4 (5—10 кОм).

Градуировку стрелочного прибора можно выполнить, воспользовавшись разными методиками. Например, с учетом того, что 1400 вспышек светодиода у нашего радиометра в минуту — это регистрация мощности излучения 1 мР/ч. Если следует подряд около 1000 вспышек за 40 секунд, то это тоже примерно соответствует 1 мР/ч. Одна вспышка, регистрируемая радиометром за 40 с, свидетельствует, что мощность излучения составляет 1 мкР/ч. 100 вспышек наблюдается в течение 40 с — значит, имеем 100 мкР/ч.

Поэтому действуют обычно так. Устанавливая радиоактивный препарат на фиксированных расстояниях от счетчика, подсчитывают импульсы. Их количество за 40 с равно мощности излучения в мкР/ч. На шкале прибора отмечают соответствующие показания.

Но, конечно же, проще всего градуировать прибор уже по оттарированному образцу. Или по эталонному радиоактивному препарату. При этом следует помнить, что количество импульсов (регистрируемая мощность излучения) при удалении эталона от счетчика должно уменьшаться пропорционально квадрату расстояния. То есть число импульсов (вспышек светодиода за 40 с) или соответствующие им показания стрелочного прибора в мкР/ч, зафиксированные счетчиком, скажем, в 10 см от эталона, должны быть в 4 раза меньшими, чем это было бы при 5-см удалении счетчика от эталона.

В качестве эталонного вполне подойдет радиоактивный препарат от армейского дозиметрического прибора. Например, от ДП11б, который поставлялся раньше даже в кабинеты начальной подготовки общеобразовательных школ. Можно использовать также и любое калийсодержащее вещество (например, К2С03 или КС1). Ведь без какого-либо внешнего загрязнения оно является источником радиации. И все потому, что природная смесь изотопов К содержит калий-40 (ß- и у-излучение!) с периодом полураспада свыше миллиарда лет. Его активность, отнесенная ко всей массе калия, составляет 29,6 Бк/г.

Для калибровки самодельного радиометра может послужить и старый циферблат, покрытый специальным, светящимся в темноте, радиоактивным составом. В крайнем случае в качестве эталона подойдет даже… экран работающего телевизора. Если, скажем, поднести к нему вплотную датчик самодельного радиометра, то стрелка последнего отклонится на определенную величину. С достаточной для практики точностью можно принять это показание за уровень излучения 35 мкР/ч.

Заимев на шкале хотя бы 2 метки, пропорциональным делением получают на рабочем участке и все остальные. Оно и понятно. Ведь шкала у самодельного радиометра — линейная (естественно, с допустимой для практики погрешностью).

В. ДАНИЛЕНКО, Н. КОЧЕТОВ

Тут можете оценить работу автора: