Со всего света

ТРУБА - ДЕЛО ТОНКОЕ

13.04.2013

Как известно, в большинстве классов спортивного моделизма успех на соревнованиях в определяющей степени зависит от мощности и надежности работы установленного на микромашине двигателя. Одним из весьма эффективных способов повышения мощности мотора является использование энергии выхлопных газов с помощью резонансных труб. Они широко .применяются спортсменами для улучшения сно-ростных характеристик моделей. В предлагаемом материале рассматриваются методы расчета длины, объема и других геометрических параметров, позволяющие улучшить характеристики резонансных труб (в конце статьи см. списон использованной литературы).
Надо отметить, что существует несколько способов расчетной оптимизации параметров труб. Тан, в одной из методин (1) указывается, что длину трубы можно рассчитать по формуле 
ТРУБА -  ДЕЛО ТОНКОЕ
 
 
 
ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ РЕЗОНАНСНЫХ ТРУБ
(Нумераций соответствует последовательности перечня исследованных труб, приведенного -в статье)
 
 
ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ РЕЗОНАНСНЫХ ТРУБ
 
Буквенная индексация элементов соответствует общепринятой системе обмера резонансных труб.
 
 
Таким образом, сегодня достаточно популярны несколько методик; однако определяемая по ним длина трубы получается примерно одинаковой.
 
Теперь рассмотрим газодинамику трубы двигателя «Росси-1Fi» при фазах выпус-на/перепуска, равных 186/130 град, и длине трубы 0,25 м. Быстроходность, рассчитанная по методике (3), оказывается равна примерно 30 000 об/мин. При этом время поворота ко-ленвала на 1 ° составляет 5,66-10-6 с. Указывается, что заталнивание свежей смеси происходит за 50° — 60° поворота коленвала, то есть примерно с (f=1360, считая с начала выхлопа. Тогда с учетом приведенной скорости волны сжатия 560 м/с получим расстояние, пройденное волной за f=1360, равное 0,43 м. Таким образом, заталкивание свежей смеси происходит с начала цилиндрической части трубы и заканчивается при f= 157o. Задержка же выхода свежей смеси из цилиндра составляет 29o (при уравнивании давления).
 
Возможен и иной вариант расчета, при котором скорость волны сжатия отличается от указанной. Отметим, что коленвал поворачивается на f=186° за время 1,05-10-3 с. В этом случае скорость волны будет равна 474 м/с (при температуре около 290° С). В приведенном варианте расчета волна сжатия будет заталкивать свежую смесь до конца выхлопа, и формула, предложенная в (1), становится более правдоподобной.
 
Если внимательно разобраться в процессах, происходящих в работающей выхлопной резонансной трубе, то станет ясно — при выхлопе образуется компактная газовая пробка, которая имеет начальную скорость порядка 623 м/с, уменьшающуюся потом за счет охлаждения и потерь, связанных с газодинамикой. При выходе пробни в диффузор за ней образуется интенсивная волна разрежения. Последняя, достигнув выхлопного окна, отражается от него либо как волна давления, либо разрежения, в зависимости от степени его раскрытия. Следует также отметить, что распространяющаяся по трубе волна разрежения может встретиться со стенкой трубы и при определенных углах встречи будет не отражаться, а гаситься. Поэтому разрежение при некоторых условиях затухает не до окончания процесса перепуска, а раньше (6).
 
Газовая пробка отражается от конфузора как волна давления или, частично, разрежения, в зависимости от диаметра концевого патрубка (7). Труба является реальной системой, и поэтому при движении и отражении волн сжатия или разрежения происходит потеря энергии, и амплитуда волны давления, заталкивающей свежую смесь в двигатель, оказывается меньше амплитуды выхлопной волны — колебание затухает под действием однократного импульса выхлопа, но при его повторении возобновляется (8).
 
Также отмечается, что геометрия диффузора влияет на формирование волны разрежения и коэффициент восстановления статического давления. Геометрия центральной вставки и конфузора оказывает влияние на фронт и амплитуду волны давления, коэффициент затухания волны разрежения и коэффициент восстановления статического давления волны сжатия (9, 6).
 
Вышесказанное дает возможность понять, что различия в подходе к расчету геометрии трубы вызывают необходимость в сравнительном анализе и выборе оптимального варианта нан самой трубы, тан и метода ее расчета.
 
С целью определения наилучшей трубы исследована возможность экспериментального метода выбора по ее звуковым характеристикам — АЧХ. Проведены испытания шести типов труб: «Росси-.15», «Росси-. 15 Fi», ЦСТКАМ-2,5, самодельная труба с тупым конфузором, самодельная труба с центральной вставной и самодельная труба типа «пузырь». Геометрические параметры приведенных труб даны в таблице.
 
Для проверки предложенного метода использовались такие приборы, как звуковой генератор (ЗГ) прямоугольных импульсов с плавной регулировкой частоты в диапазоне 800—2500 Гц, осциллограф с масштабной сетной, микрофон и телефон. Сама методика достаточно проста. Телефон подсоединяется к ЗГ, а один вывод — к входу «X» осциллографа; микрофон через электролитический конденсатор — к питанию и входу «У»; телефон с помощью пластилина крепится на начале трубы, а микрофон — на конце выхлопного патрубка.
 
При изменении частоты генератора на экране осциллографа появляются фигуры Лисажу, что позволяет сравнивать фазы колебаний в начале и конце трубы, а танже отслеживать амплитуду резонансов. Для исследований бралась нечетная фаза колебаний. При появлении на экране фигуры, соответствующей требуемой фазе, осциллограф переводился в обычный режим измерений, что позволяло точно определить амплитуду резонансного колебания. Одновременно с целью фиксации формы резонансной кривой считывалась амплитуда волны в диапазоне 800—2500 Гц. По полученным данным строится графин зависимости A=f(U). На основании этих данных выбирается труба, имеющая максимальную амплитуду нечетной фазы нолебаний; причем наличие третьей полуволны позволяет судить (при частоте ее около 1500 Гц) о стабильности работы трубы.
 
Предлагаемая методика дает возможность выбрать резонансную трубу для модельного двигателя внутреннего сгорания по наилучшим мощностным характеристикам без трудоемких летных испытаний, на результаты которых — а это очень трудно учесть — практически всегда накладывается влияние посторонних внешних случайных факторов.
 
В. ФОНКИЧ, мастер спорта Украинв, г. Черкассы.




Рекомендуем почитать
  • «ЧЕХОЛ» ДЛЯ ЛЕЗВИЯ

    «ЧЕХОЛ» ДЛЯ ЛЕЗВИЯКачество обработки пиломатериалов рубанком во многом зависит от остроты лезвия его ножа (или, как его называют, — железки). А, поскольку заточенная часть всегда выступает из корпуса рубанка, при хранении ее нетрудно повредить. Чтобы защитить лезвие, его можно закрыть съемным резиновым кольцом.

Добавить комментарий

Защитный код
Обновить

ПОДПИСЫВАЙТЕСЬ VK FB


Нашли ошибку? Выделите слово и нажмите Ctrl+Enter.