Величина интересующей нас силы Т зависит от угла атаки и скорости, с которой пластина движется в потоке.
Если рассматривать соотношение сил Т и X в зависимости от угла атаки при постоянной скорости, то окажется, что сопротивление постепенно увеличивается и достигает максимума при вертикальном положении пластины. Сила же тяги сначала растет (до наивыгоднейшего для данной скорости движения угла атаки), а затем резко уменьшается. Следовательно, для каждой скорости может быть только одни наивыгоднейший угол атаки.
Рис. 1. Силы, действующие на прямую пластинку и аэродинамический профиль при движении в воздушном потоке:
V — скорость набегающего потока, X — сила сопротивления воздуха, а — угол атаки, Р1 — сила давления, Р2 — сила разрежения, Р — равнодействующая, Т — сила тяги, нлн подъемная сила, I2 — длина верхней части профиля, I1 — длина нижней части.
Рис. 2. Типы воздушных винтов:
А — деревянный блочный, Б — металлический блочный, В — винт с установкой лопастей на месте с контровочной гайкой, Г — винт с разрезной втулкой и стяжными хомутами.
1 — втулка, 2 — лопасть, 3 — контргайка, 4 — стяжной хомут, 5 — болт с гайкой.
Рис. 3. Схема воздушного винта изменяемого шага с механическим управлением:
1 — промежуточная качалка, 2 — ось, 3 — скользящая муфта, 4 — тяга управления, 5 — рычаг лопасти, 6 — гайка крепления втулки, 7 — втулка винта, 8 — противовес, 9 — лопасть, 10 — шарнир тяги, 11 — приводной вал, 12 — рычаг управления изменением шага винта в кабине водителя, 13 — фиксатор рычага управления, 14 — зубчатый сектор, 15 — тяга.
А — ход муфты, Б — ход рычагов лопасти, В — ход промежуточной качалки, Г — ручка в положении малого шага, Д — ручка в положении большого шага, Е — ручка в положении реверса.
Если пластина не плоская, а выполнена в виде аэродинамического профиля (см. рис. 1Б), то в зависимости от его формы величина подъемной силы при прочих равных условиях значительно возрастает. Аэродинамический профиль более выгоден, чем прямая пластина. Скорость обтекания его верхнего и нижнего обводов различны, а следовательно, неоднозначно и давление. Поэтому такой профиль даже при нулевом угле атаки создает подъемную силу. В то же время сопротивление его меньше, чем у прямой пластины такой I толщины.
Важным параметром, определяющие назначение воздушного винта, является величина его шага (Н). Шаг определяется по углу атаки поперечного сечения лопасти, расположенного на 0,75 радиуса винта. Выражается Н расстоянием, которое проходит винт за один полный оборот. Винт образно можна сравнить с гайкой, наворачиваемой на болт. Расстояние, которое гайка проходит по резьбе за один полный оборот есть шаг. Он определяется по формуле:
Н = 1,5 ПR tgα,
где: R — радиус винта, α — угол атаки (установки) профиля.
Но болт и гайка — твердые тела. Воздушный же винт вращается в сжимаемой среде, имеющей малую плотность. При этом он проскальзывает продвигается вперед на значительно меньшее расстояние, чем его расчетный шаг.
Чем больше нагрузка на винт, больше величина скольжения и больше фактический шаг винта. Фактический шаг определяет нагрузку на приводной двигатель и влияет на экономичность.
Применение винтов изменяемого шага позволяет получить наибольший коэффициент полезного действия (КПД), а следовательно, и наибольшую тягу. Правда, только на одном, соответствующем этому шагу, расчетном режиме. Конструкторы аэросаней чаще всего изготавливают воздушные винты блочными, выполненными из цельного или склеенного деревянного бруса (рис. 2). Подобный винт можно сделать и из металла.
На практике в зависимости от дорожных условий желательно варьировать величину шага. При движении с места надо получить максимальную тягу (шаг винта при этом должен быть малым), а с увеличением скорости шаг надо увеличивать.
На рисунке изображены винты с шагом, изменяемым на месте. Такие винты получили большое распространение на самодельных аэросанях. Они могут быть двух-, трех- и четырехлопастными. Втулка и лопасти делаются отдельно. Втулка из стали или дюралюминия снабжается посадочным конусом со шпоночной канавкой для установки на приводной вал двигателя и имеет гнезда под лопасти винта. Гнезда могут быть резьбовыми (рис. 2В) или с проточенными кольцевыми канавками, если втулка разъемная (рис. 2 Г). Число гнезд соответствует количеству лопастей. Лопасти изготавливаются из дерева, пластика с усиленной комлевой частью или из металла. Если они крепятся на резьбе, то комлевая часть заканчивается резьбовым хвостовиком.
Для точной установки лопастей на нужный угол атаки на их хвостовики наносят контрольные риски, а на торцевой части каждого гнезда во втулке по транспортиру градуируют шкалу углов в нужном для данного винта диапазоне, например: от 3°—5° до 25°—30°. При сборке все лопасти устанавливаются на одинаковый угол и контрятся гайками.