Кому нужны навороченные готовые дроны, когда можно создать свой собственный шедевр? Этот гайд — ваш универсальный помощник в создании крутого дрона на базе Arduino. И поверьте, он будет круче (и, скорее всего, дешевле), чем любой дрон из магазина.
Мы будем использовать плату Arduino в качестве мозга нашего квадрокоптера, программируя её для управления моторами, чтобы ваш дрон взлетел в небо. Представьте, что это большой летающий и настраиваемый робот, который вы сделали сами — как это круто!?
Этот гайд идеально подходит для тех, кто хочет:
- Испытать острые ощущения от создания дрона с нуля
- Узнать основы программирования Arduino и управления полётом
- Выпустить своего внутреннего безумного учёного (ну или просто любителя дронов)
Так что, если вы готовы отказаться от магазинных решений и создать что-то по-настоящему уникальное, надевайте свои воображаемые очки и приступим!
Необходимые материалы
Для создания этого проекта вам понадобятся:
- Каркас дрона F450
- Бесколлекторные моторы 1000 KV x4
- Регуляторы скорости (ESC) 30A x4
- Пропеллеры x4
- Модуль MPU 6050
- Литий-полимерный аккумулятор 2200 мАч
- Разъёмы XT60 (папа, мама, можно найти в любом магазине электроники)
- Передатчик и приёмник Flysky FS-I6
Шаг 1: Пайка разъёма аккумулятора и ESC
PDB (Power Distribution Board) — это нижняя пластина каркаса с квадратными площадками вокруг. Припаяйте ESC к PDB, как показано на изображении. Проверьте полярность!
Также есть дополнительные площадки для соединения аккумулятора. Припаяйте женский разъём XT60 к этим площадкам, убедившись, что красный провод идет к положительному контакту, а чёрный — к отрицательному.
Шаг 2: Сборка каркаса
Теперь пришло время собрать каркас. Прикрутите «руки» к нижней пластине и проведите ESC через «подмышки» (маленькие арки). Затем закрепите ESC на нижней стороне каркаса с помощью стяжек. После обрезки лишнего пластика стяжек прикрутите верхнюю пластину. Это довольно просто, хотя там 16 винтов! Потеря хотя бы одного сделает верхнюю пластину очень нестабильной, а это плохо, так как на неё будем монтировать электронику. Так что, если потеряли винт, сразу найдите замену!
Шаг 3: Построение схемы
Вот схема подключения. Не беспокойтесь о затемнённых областях, это не важно. Этот дизайн был утомительным, и я даже случайно уничтожил старый Arduino Uno, работая над схемой питания.
Подключите все компоненты и постарайтесь аккуратно уложить провода, используя множество стяжек и изоленты. Я работаю над верхним корпусом и добавлю STL-файлы в следующем обновлении.
Использовал массивные стяжки, чтобы надежно прикрепить аккумулятор к нижней палубе каркаса дрона.
Шаг 4: Программирование дрона. Часть 1
Чтобы начать откройте Arduino IDE.
Совет: всегда запускайте Arduino IDE с правами администратора. Это решит множество проблем с загрузкой и доступом к Arduino через Serial Monitor.
Сначала откройте скетч ClearEEPROM и загрузите его. Если в Arduino загружены предыдущие скетчи, загрузите пустой скетч, а затем ClearEEPROM.
ClearEEPROM
#include void setup(){ for (int i = 0 ; i < EEPROM.length() ; i++){ EEPROM.write(i, 0); } } void loop(){ //Do nothing here... }
DroneSetup
#include //Include the Wire.h library so we can communicate with the gyro #include //Include the EEPROM.h library so we can store information onto the EEPROM //Declaring Global Variables byte last_channel_1, last_channel_2, last_channel_3, last_channel_4; byte lowByte, highByte, type, gyro_address, error, clockspeed_ok; byte channel_1_assign, channel_2_assign, channel_3_assign, channel_4_assign; byte roll_axis, pitch_axis, yaw_axis; byte receiver_check_byte, gyro_check_byte; volatile int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3, receiver_input_channel_4; int center_channel_1, center_channel_2, center_channel_3, center_channel_4; int high_channel_1, high_channel_2, high_channel_3, high_channel_4; int low_channel_1, low_channel_2, low_channel_3, low_channel_4; int address, cal_int; unsigned long timer, timer_1, timer_2, timer_3, timer_4, current_time; float gyro_pitch, gyro_roll, gyro_yaw; float gyro_roll_cal, gyro_pitch_cal, gyro_yaw_cal; //Setup routine void setup(){ pinMode(12, OUTPUT); //Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs PCICR |= (1 << PCIE0); // set PCIE0 to enable PCMSK0 scan PCMSK0 |= (1 << PCINT0); // set PCINT0 (digital input 8) to trigger an interrupt on state change PCMSK0 |= (1 << PCINT1); // set PCINT1 (digital input 9)to trigger an interrupt on state change PCMSK0 |= (1 << PCINT2); // set PCINT2 (digital input 10)to trigger an interrupt on state change PCMSK0 |= (1 << PCINT3); // set PCINT3 (digital input 11)to trigger an interrupt on state change Wire.begin(); //Start the I2C as master Serial.begin(57600); //Start the serial connetion @ 57600bps delay(250); //Give the gyro time to start } //Main program void loop(){ //Show the YMFC-3D V2 intro intro(); Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("System check")); Serial.println(F("===================================================")); delay(1000); Serial.println(F("Checking I2C clock speed.")); delay(1000); TWBR = 12; //Set the I2C clock speed to 400kHz. #if F_CPU == 16000000L //If the clock speed is 16MHz include the next code line when compiling clockspeed_ok = 1; //Set clockspeed_ok to 1 #endif //End of if statement if(TWBR == 12 && clockspeed_ok){ Serial.println(F("I2C clock speed is correctly set to 400kHz.")); } else{ Serial.println(F("I2C clock speed is not set to 400kHz. (ERROR 8)")); error = 1; } if(error == 0){ Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("Transmitter setup")); Serial.println(F("===================================================")); delay(1000); Serial.print(F("Checking for valid receiver signals.")); //Wait 10 seconds until all receiver inputs are valid wait_for_receiver(); Serial.println(F("")); } //Quit the program in case of an error if(error == 0){ delay(2000); Serial.println(F("Place all sticks and subtrims in the center position within 10 seconds.")); for(int i = 9;i > 0;i--){ delay(1000); Serial.print(i); Serial.print(" "); } Serial.println(" "); //Store the central stick positions center_channel_1 = receiver_input_channel_1; center_channel_2 = receiver_input_channel_2; center_channel_3 = receiver_input_channel_3; center_channel_4 = receiver_input_channel_4; Serial.println(F("")); Serial.println(F("Center positions stored.")); Serial.print(F("Digital input 08 = ")); Serial.println(receiver_input_channel_1); Serial.print(F("Digital input 09 = ")); Serial.println(receiver_input_channel_2); Serial.print(F("Digital input 10 = ")); Serial.println(receiver_input_channel_3); Serial.print(F("Digital input 11 = ")); Serial.println(receiver_input_channel_4); Serial.println(F("")); Serial.println(F("")); } if(error == 0){ Serial.println(F("Move the throttle stick to full throttle and back to center")); //Check for throttle movement check_receiver_inputs(1); Serial.print(F("Throttle is connected to digital input ")); Serial.println((channel_3_assign & 0b00000111) + 7); if(channel_3_assign & 0b10000000)Serial.println(F("Channel inverted = yes")); else Serial.println(F("Channel inverted = no")); wait_sticks_zero(); Serial.println(F("")); Serial.println(F("")); Serial.println(F("Move the roll stick to simulate left wing up and back to center")); //Check for throttle movement check_receiver_inputs(2); Serial.print(F("Roll is connected to digital input ")); Serial.println((channel_1_assign & 0b00000111) + 7); if(channel_1_assign & 0b10000000)Serial.println(F("Channel inverted = yes")); else Serial.println(F("Channel inverted = no")); wait_sticks_zero(); } if(error == 0){ Serial.println(F("")); Serial.println(F("")); Serial.println(F("Move the pitch stick to simulate nose up and back to center")); //Check for throttle movement check_receiver_inputs(3); Serial.print(F("Pitch is connected to digital input ")); Serial.println((channel_2_assign & 0b00000111) + 7); if(channel_2_assign & 0b10000000)Serial.println(F("Channel inverted = yes")); else Serial.println(F("Channel inverted = no")); wait_sticks_zero(); } if(error == 0){ Serial.println(F("")); Serial.println(F("")); Serial.println(F("Move the yaw stick to simulate nose right and back to center")); //Check for throttle movement check_receiver_inputs(4); Serial.print(F("Yaw is connected to digital input ")); Serial.println((channel_4_assign & 0b00000111) + 7); if(channel_4_assign & 0b10000000)Serial.println(F("Channel inverted = yes")); else Serial.println(F("Channel inverted = no")); wait_sticks_zero(); } if(error == 0){ Serial.println(F("")); Serial.println(F("")); Serial.println(F("Gently move all the sticks simultaneously to their extends")); Serial.println(F("When ready put the sticks back in their center positions")); //Register the min and max values of the receiver channels register_min_max(); Serial.println(F("")); Serial.println(F("")); Serial.println(F("High, low and center values found during setup")); Serial.print(F("Digital input 08 values:")); Serial.print(low_channel_1); Serial.print(F(" - ")); Serial.print(center_channel_1); Serial.print(F(" - ")); Serial.println(high_channel_1); Serial.print(F("Digital input 09 values:")); Serial.print(low_channel_2); Serial.print(F(" - ")); Serial.print(center_channel_2); Serial.print(F(" - ")); Serial.println(high_channel_2); Serial.print(F("Digital input 10 values:")); Serial.print(low_channel_3); Serial.print(F(" - ")); Serial.print(center_channel_3); Serial.print(F(" - ")); Serial.println(high_channel_3); Serial.print(F("Digital input 11 values:")); Serial.print(low_channel_4); Serial.print(F(" - ")); Serial.print(center_channel_4); Serial.print(F(" - ")); Serial.println(high_channel_4); Serial.println(F("Move stick 'nose up' and back to center to continue")); check_to_continue(); } if(error == 0){ //What gyro is connected Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("Gyro search")); Serial.println(F("===================================================")); delay(2000); Serial.println(F("Searching for MPU-6050 on address 0x68/104")); delay(1000); if(search_gyro(0x68, 0x75) == 0x68){ Serial.println(F("MPU-6050 found on address 0x68")); type = 1; gyro_address = 0x68; } if(type == 0){ Serial.println(F("Searching for MPU-6050 on address 0x69/105")); delay(1000); if(search_gyro(0x69, 0x75) == 0x68){ Serial.println(F("MPU-6050 found on address 0x69")); type = 1; gyro_address = 0x69; } } if(type == 0){ Serial.println(F("Searching for L3G4200D on address 0x68/104")); delay(1000); if(search_gyro(0x68, 0x0F) == 0xD3){ Serial.println(F("L3G4200D found on address 0x68")); type = 2; gyro_address = 0x68; } } if(type == 0){ Serial.println(F("Searching for L3G4200D on address 0x69/105")); delay(1000); if(search_gyro(0x69, 0x0F) == 0xD3){ Serial.println(F("L3G4200D found on address 0x69")); type = 2; gyro_address = 0x69; } } if(type == 0){ Serial.println(F("Searching for L3GD20H on address 0x6A/106")); delay(1000); if(search_gyro(0x6A, 0x0F) == 0xD7){ Serial.println(F("L3GD20H found on address 0x6A")); type = 3; gyro_address = 0x6A; } } if(type == 0){ Serial.println(F("Searching for L3GD20H on address 0x6B/107")); delay(1000); if(search_gyro(0x6B, 0x0F) == 0xD7){ Serial.println(F("L3GD20H found on address 0x6B")); type = 3; gyro_address = 0x6B; } } if(type == 0){ Serial.println(F("No gyro device found!!! (ERROR 3)")); error = 1; } else{ delay(3000); Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("Gyro register settings")); Serial.println(F("===================================================")); start_gyro(); //Setup the gyro for further use } } //If the gyro is found we can setup the correct gyro axes. if(error == 0){ delay(3000); Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("Gyro calibration")); Serial.println(F("===================================================")); Serial.println(F("Don't move the quadcopter!! Calibration starts in 3 seconds")); delay(3000); Serial.println(F("Calibrating the gyro, this will take +/- 8 seconds")); Serial.print(F("Please wait")); //Let's take multiple gyro data samples so we can determine the average gyro offset (calibration). for (cal_int = 0; cal_int < 2000 ; cal_int ++){ //Take 2000 readings for calibration. if(cal_int % 100 == 0)Serial.print(F(".")); //Print dot to indicate calibration. gyro_signalen(); //Read the gyro output. gyro_roll_cal += gyro_roll; //Ad roll value to gyro_roll_cal. gyro_pitch_cal += gyro_pitch; //Ad pitch value to gyro_pitch_cal. gyro_yaw_cal += gyro_yaw; //Ad yaw value to gyro_yaw_cal. delay(4); //Wait 3 milliseconds before the next loop. } //Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset. gyro_roll_cal /= 2000; //Divide the roll total by 2000. gyro_pitch_cal /= 2000; //Divide the pitch total by 2000. gyro_yaw_cal /= 2000; //Divide the yaw total by 2000. //Show the calibration results Serial.println(F("")); Serial.print(F("Axis 1 offset=")); Serial.println(gyro_roll_cal); Serial.print(F("Axis 2 offset=")); Serial.println(gyro_pitch_cal); Serial.print(F("Axis 3 offset=")); Serial.println(gyro_yaw_cal); Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("Gyro axes configuration")); Serial.println(F("===================================================")); //Detect the left wing up movement Serial.println(F("Lift the left side of the quadcopter to a 45 degree angle within 10 seconds")); //Check axis movement check_gyro_axes(1); if(error == 0){ Serial.println(F("OK!")); Serial.print(F("Angle detection = ")); Serial.println(roll_axis & 0b00000011); if(roll_axis & 0b10000000)Serial.println(F("Axis inverted = yes")); else Serial.println(F("Axis inverted = no")); Serial.println(F("Put the quadcopter back in its original position")); Serial.println(F("Move stick 'nose up' and back to center to continue")); check_to_continue(); //Detect the nose up movement Serial.println(F("")); Serial.println(F("")); Serial.println(F("Lift the nose of the quadcopter to a 45 degree angle within 10 seconds")); //Check axis movement check_gyro_axes(2); } if(error == 0){ Serial.println(F("OK!")); Serial.print(F("Angle detection = ")); Serial.println(pitch_axis & 0b00000011); if(pitch_axis & 0b10000000)Serial.println(F("Axis inverted = yes")); else Serial.println(F("Axis inverted = no")); Serial.println(F("Put the quadcopter back in its original position")); Serial.println(F("Move stick 'nose up' and back to center to continue")); check_to_continue(); //Detect the nose right movement Serial.println(F("")); Serial.println(F("")); Serial.println(F("Rotate the nose of the quadcopter 45 degree to the right within 10 seconds")); //Check axis movement check_gyro_axes(3); } if(error == 0){ Serial.println(F("OK!")); Serial.print(F("Angle detection = ")); Serial.println(yaw_axis & 0b00000011); if(yaw_axis & 0b10000000)Serial.println(F("Axis inverted = yes")); else Serial.println(F("Axis inverted = no")); Serial.println(F("Put the quadcopter back in its original position")); Serial.println(F("Move stick 'nose up' and back to center to continue")); check_to_continue(); } } if(error == 0){ Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("LED test")); Serial.println(F("===================================================")); digitalWrite(12, HIGH); Serial.println(F("The LED should now be lit")); Serial.println(F("Move stick 'nose up' and back to center to continue")); check_to_continue(); digitalWrite(12, LOW); } Serial.println(F("")); if(error == 0){ Serial.println(F("===================================================")); Serial.println(F("Final setup check")); Serial.println(F("===================================================")); delay(1000); if(receiver_check_byte == 0b00001111){ Serial.println(F("Receiver channels ok")); } else{ Serial.println(F("Receiver channel verification failed!!! (ERROR 6)")); error = 1; } delay(1000); if(gyro_check_byte == 0b00000111){ Serial.println(F("Gyro axes ok")); } else{ Serial.println(F("Gyro exes verification failed!!! (ERROR 7)")); error = 1; } } if(error == 0){ //If all is good, store the information in the EEPROM Serial.println(F("")); Serial.println(F("===================================================")); Serial.println(F("Storing EEPROM information")); Serial.println(F("===================================================")); Serial.println(F("Writing EEPROM")); delay(1000); Serial.println(F("Done!")); EEPROM.write(0, center_channel_1 & 0b11111111); EEPROM.write(1, center_channel_1 >> 8); EEPROM.write(2, center_channel_2 & 0b11111111); EEPROM.write(3, center_channel_2 >> 8); EEPROM.write(4, center_channel_3 & 0b11111111); EEPROM.write(5, center_channel_3 >> 8); EEPROM.write(6, center_channel_4 & 0b11111111); EEPROM.write(7, center_channel_4 >> 8); EEPROM.write(8, high_channel_1 & 0b11111111); EEPROM.write(9, high_channel_1 >> 8); EEPROM.write(10, high_channel_2 & 0b11111111); EEPROM.write(11, high_channel_2 >> 8); EEPROM.write(12, high_channel_3 & 0b11111111); EEPROM.write(13, high_channel_3 >> 8); EEPROM.write(14, high_channel_4 & 0b11111111); EEPROM.write(15, high_channel_4 >> 8); EEPROM.write(16, low_channel_1 & 0b11111111); EEPROM.write(17, low_channel_1 >> 8); EEPROM.write(18, low_channel_2 & 0b11111111); EEPROM.write(19, low_channel_2 >> 8); EEPROM.write(20, low_channel_3 & 0b11111111); EEPROM.write(21, low_channel_3 >> 8); EEPROM.write(22, low_channel_4 & 0b11111111); EEPROM.write(23, low_channel_4 >> 8); EEPROM.write(24, channel_1_assign); EEPROM.write(25, channel_2_assign); EEPROM.write(26, channel_3_assign); EEPROM.write(27, channel_4_assign); EEPROM.write(28, roll_axis); EEPROM.write(29, pitch_axis); EEPROM.write(30, yaw_axis); EEPROM.write(31, type); EEPROM.write(32, gyro_address); //Write the EEPROM signature EEPROM.write(33, 'J'); EEPROM.write(34, 'M'); EEPROM.write(35, 'B'); //To make sure evrything is ok, verify the EEPROM data. Serial.println(F("Verify EEPROM data")); delay(1000); if(center_channel_1 != ((EEPROM.read(1) << 8) | EEPROM.read(0)))error = 1; if(center_channel_2 != ((EEPROM.read(3) << 8) | EEPROM.read(2)))error = 1; if(center_channel_3 != ((EEPROM.read(5) << 8) | EEPROM.read(4)))error = 1; if(center_channel_4 != ((EEPROM.read(7) << 8) | EEPROM.read(6)))error = 1; if(high_channel_1 != ((EEPROM.read(9) << 8) | EEPROM.read(8)))error = 1; if(high_channel_2 != ((EEPROM.read(11) << 8) | EEPROM.read(10)))error = 1; if(high_channel_3 != ((EEPROM.read(13) << 8) | EEPROM.read(12)))error = 1; if(high_channel_4 != ((EEPROM.read(15) << 8) | EEPROM.read(14)))error = 1; if(low_channel_1 != ((EEPROM.read(17) << 8) | EEPROM.read(16)))error = 1; if(low_channel_2 != ((EEPROM.read(19) << 8) | EEPROM.read(18)))error = 1; if(low_channel_3 != ((EEPROM.read(21) << 8) | EEPROM.read(20)))error = 1; if(low_channel_4 != ((EEPROM.read(23) << 8) | EEPROM.read(22)))error = 1; if(channel_1_assign != EEPROM.read(24))error = 1; if(channel_2_assign != EEPROM.read(25))error = 1; if(channel_3_assign != EEPROM.read(26))error = 1; if(channel_4_assign != EEPROM.read(27))error = 1; if(roll_axis != EEPROM.read(28))error = 1; if(pitch_axis != EEPROM.read(29))error = 1; if(yaw_axis != EEPROM.read(30))error = 1; if(type != EEPROM.read(31))error = 1; if(gyro_address != EEPROM.read(32))error = 1; if('J' != EEPROM.read(33))error = 1; if('M' != EEPROM.read(34))error = 1; if('B' != EEPROM.read(35))error = 1; if(error == 1)Serial.println(F("EEPROM verification failed!!! (ERROR 5)")); else Serial.println(F("Verification done")); } if(error == 0){ Serial.println(F("Setup is finished.")); Serial.println(F("You can now calibrate the esc's and upload the YMFC-AL code.")); } else{ Serial.println(F("The setup is aborted due to an error.")); Serial.println(F("Check the Q and A page of the YMFC-AL project on:")); Serial.println(F("www.brokking.net for more information about this error.")); } while(1); } //Search for the gyro and check the Who_am_I register byte search_gyro(int gyro_address, int who_am_i){ Wire.beginTransmission(gyro_address); Wire.write(who_am_i); Wire.endTransmission(); Wire.requestFrom(gyro_address, 1); timer = millis() + 100; while(Wire.available() < 1 && timer > millis()); lowByte = Wire.read(); address = gyro_address; return lowByte; } void start_gyro(){ //Setup the L3G4200D or L3GD20H if(type == 2 || type == 3){ Wire.beginTransmission(address); //Start communication with the gyro with the address found during search Wire.write(0x20); //We want to write to register 1 (20 hex) Wire.write(0x0F); //Set the register bits as 00001111 (Turn on the gyro and enable all axis) Wire.endTransmission(); //End the transmission with the gyro Wire.beginTransmission(address); //Start communication with the gyro (adress 1101001) Wire.write(0x20); //Start reading @ register 28h and auto increment with every read Wire.endTransmission(); //End the transmission Wire.requestFrom(address, 1); //Request 6 bytes from the gyro while(Wire.available() < 1); //Wait until the 1 byte is received Serial.print(F("Register 0x20 is set to:")); Serial.println(Wire.read(),BIN); Wire.beginTransmission(address); //Start communication with the gyro with the address found during search Wire.write(0x23); //We want to write to register 4 (23 hex) Wire.write(0x90); //Set the register bits as 10010000 (Block Data Update active & 500dps full scale) Wire.endTransmission(); //End the transmission with the gyro Wire.beginTransmission(address); //Start communication with the gyro (adress 1101001) Wire.write(0x23); //Start reading @ register 28h and auto increment with every read Wire.endTransmission(); //End the transmission Wire.requestFrom(address, 1); //Request 6 bytes from the gyro while(Wire.available() < 1); //Wait until the 1 byte is received Serial.print(F("Register 0x23 is set to:")); Serial.println(Wire.read(),BIN); } //Setup the MPU-6050 if(type == 1){ Wire.beginTransmission(address); //Start communication with the gyro Wire.write(0x6B); //PWR_MGMT_1 register Wire.write(0x00); //Set to zero to turn on the gyro Wire.endTransmission(); //End the transmission Wire.beginTransmission(address); //Start communication with the gyro Wire.write(0x6B); //Start reading @ register 28h and auto increment with every read Wire.endTransmission(); //End the transmission Wire.requestFrom(address, 1); //Request 1 bytes from the gyro while(Wire.available() < 1); //Wait until the 1 byte is received Serial.print(F("Register 0x6B is set to:")); Serial.println(Wire.read(),BIN); Wire.beginTransmission(address); //Start communication with the gyro Wire.write(0x1B); //GYRO_CONFIG register Wire.write(0x08); //Set the register bits as 00001000 (500dps full scale) Wire.endTransmission(); //End the transmission Wire.beginTransmission(address); //Start communication with the gyro (adress 1101001) Wire.write(0x1B); //Start reading @ register 28h and auto increment with every read Wire.endTransmission(); //End the transmission Wire.requestFrom(address, 1); //Request 1 bytes from the gyro while(Wire.available() < 1); //Wait until the 1 byte is received Serial.print(F("Register 0x1B is set to:")); Serial.println(Wire.read(),BIN); } } void gyro_signalen(){ if(type == 2 || type == 3){ Wire.beginTransmission(address); //Start communication with the gyro Wire.write(168); //Start reading @ register 28h and auto increment with every read Wire.endTransmission(); //End the transmission Wire.requestFrom(address, 6); //Request 6 bytes from the gyro while(Wire.available() < 6); //Wait until the 6 bytes are received lowByte = Wire.read(); //First received byte is the low part of the angular data highByte = Wire.read(); //Second received byte is the high part of the angular data gyro_roll = ((highByte<<8)|lowByte); //Multiply highByte by 256 (shift left by 8) and ad lowByte if(cal_int == 2000)gyro_roll -= gyro_roll_cal; //Only compensate after the calibration lowByte = Wire.read(); //First received byte is the low part of the angular data highByte = Wire.read(); //Second received byte is the high part of the angular data gyro_pitch = ((highByte<<8)|lowByte); //Multiply highByte by 256 (shift left by 8) and ad lowByte if(cal_int == 2000)gyro_pitch -= gyro_pitch_cal; //Only compensate after the calibration lowByte = Wire.read(); //First received byte is the low part of the angular data highByte = Wire.read(); //Second received byte is the high part of the angular data gyro_yaw = ((highByte<<8)|lowByte); //Multiply highByte by 256 (shift left by 8) and ad lowByte if(cal_int == 2000)gyro_yaw -= gyro_yaw_cal; //Only compensate after the calibration } if(type == 1){ Wire.beginTransmission(address); //Start communication with the gyro Wire.write(0x43); //Start reading @ register 43h and auto increment with every read Wire.endTransmission(); //End the transmission Wire.requestFrom(address,6); //Request 6 bytes from the gyro while(Wire.available() < 6); //Wait until the 6 bytes are received gyro_roll=Wire.read()<<8|Wire.read(); //Read high and low part of the angular data if(cal_int == 2000)gyro_roll -= gyro_roll_cal; //Only compensate after the calibration gyro_pitch=Wire.read()<<8|Wire.read(); //Read high and low part of the angular data if(cal_int == 2000)gyro_pitch -= gyro_pitch_cal; //Only compensate after the calibration gyro_yaw=Wire.read()<<8|Wire.read(); //Read high and low part of the angular data if(cal_int == 2000)gyro_yaw -= gyro_yaw_cal; //Only compensate after the calibration } } //Check if a receiver input value is changing within 30 seconds void check_receiver_inputs(byte movement){ byte trigger = 0; int pulse_length; timer = millis() + 30000; while(timer > millis() && trigger == 0){ delay(250); if(receiver_input_channel_1 > 1750 || receiver_input_channel_1 < 1250){ trigger = 1; receiver_check_byte |= 0b00000001; pulse_length = receiver_input_channel_1; } if(receiver_input_channel_2 > 1750 || receiver_input_channel_2 < 1250){ trigger = 2; receiver_check_byte |= 0b00000010; pulse_length = receiver_input_channel_2; } if(receiver_input_channel_3 > 1750 || receiver_input_channel_3 < 1250){ trigger = 3; receiver_check_byte |= 0b00000100; pulse_length = receiver_input_channel_3; } if(receiver_input_channel_4 > 1750 || receiver_input_channel_4 < 1250){ trigger = 4; receiver_check_byte |= 0b00001000; pulse_length = receiver_input_channel_4; } } if(trigger == 0){ error = 1; Serial.println(F("No stick movement detected in the last 30 seconds!!! (ERROR 2)")); } //Assign the stick to the function. else{ if(movement == 1){ channel_3_assign = trigger; if(pulse_length < 1250)channel_3_assign += 0b10000000; } if(movement == 2){ channel_1_assign = trigger; if(pulse_length < 1250)channel_1_assign += 0b10000000; } if(movement == 3){ channel_2_assign = trigger; if(pulse_length < 1250)channel_2_assign += 0b10000000; } if(movement == 4){ channel_4_assign = trigger; if(pulse_length < 1250)channel_4_assign += 0b10000000; } } } void check_to_continue(){ byte continue_byte = 0; while(continue_byte == 0){ if(channel_2_assign == 0b00000001 && receiver_input_channel_1 > center_channel_1 + 150)continue_byte = 1; if(channel_2_assign == 0b10000001 && receiver_input_channel_1 < center_channel_1 - 150)continue_byte = 1; if(channel_2_assign == 0b00000010 && receiver_input_channel_2 > center_channel_2 + 150)continue_byte = 1; if(channel_2_assign == 0b10000010 && receiver_input_channel_2 < center_channel_2 - 150)continue_byte = 1; if(channel_2_assign == 0b00000011 && receiver_input_channel_3 > center_channel_3 + 150)continue_byte = 1; if(channel_2_assign == 0b10000011 && receiver_input_channel_3 < center_channel_3 - 150)continue_byte = 1; if(channel_2_assign == 0b00000100 && receiver_input_channel_4 > center_channel_4 + 150)continue_byte = 1; if(channel_2_assign == 0b10000100 && receiver_input_channel_4 < center_channel_4 - 150)continue_byte = 1; delay(100); } wait_sticks_zero(); } //Check if the transmitter sticks are in the neutral position void wait_sticks_zero(){ byte zero = 0; while(zero < 15){ if(receiver_input_channel_1 < center_channel_1 + 20 && receiver_input_channel_1 > center_channel_1 - 20)zero |= 0b00000001; if(receiver_input_channel_2 < center_channel_2 + 20 && receiver_input_channel_2 > center_channel_2 - 20)zero |= 0b00000010; if(receiver_input_channel_3 < center_channel_3 + 20 && receiver_input_channel_3 > center_channel_3 - 20)zero |= 0b00000100; if(receiver_input_channel_4 < center_channel_4 + 20 && receiver_input_channel_4 > center_channel_4 - 20)zero |= 0b00001000; delay(100); } } //Checck if the receiver values are valid within 10 seconds void wait_for_receiver(){ byte zero = 0; timer = millis() + 10000; while(timer > millis() && zero < 15){ if(receiver_input_channel_1 < 2100 && receiver_input_channel_1 > 900)zero |= 0b00000001; if(receiver_input_channel_2 < 2100 && receiver_input_channel_2 > 900)zero |= 0b00000010; if(receiver_input_channel_3 < 2100 && receiver_input_channel_3 > 900)zero |= 0b00000100; if(receiver_input_channel_4 < 2100 && receiver_input_channel_4 > 900)zero |= 0b00001000; delay(500); Serial.print(F(".")); } if(zero == 0){ error = 1; Serial.println(F(".")); Serial.println(F("No valid receiver signals found!!! (ERROR 1)")); } else Serial.println(F(" OK")); } //Register the min and max receiver values and exit when the sticks are back in the neutral position void register_min_max(){ byte zero = 0; low_channel_1 = receiver_input_channel_1; low_channel_2 = receiver_input_channel_2; low_channel_3 = receiver_input_channel_3; low_channel_4 = receiver_input_channel_4; while(receiver_input_channel_1 < center_channel_1 + 20 && receiver_input_channel_1 > center_channel_1 - 20)delay(250); Serial.println(F("Measuring endpoints....")); while(zero < 15){ if(receiver_input_channel_1 < center_channel_1 + 20 && receiver_input_channel_1 > center_channel_1 - 20)zero |= 0b00000001; if(receiver_input_channel_2 < center_channel_2 + 20 && receiver_input_channel_2 > center_channel_2 - 20)zero |= 0b00000010; if(receiver_input_channel_3 < center_channel_3 + 20 && receiver_input_channel_3 > center_channel_3 - 20)zero |= 0b00000100; if(receiver_input_channel_4 < center_channel_4 + 20 && receiver_input_channel_4 > center_channel_4 - 20)zero |= 0b00001000; if(receiver_input_channel_1 < low_channel_1)low_channel_1 = receiver_input_channel_1; if(receiver_input_channel_2 < low_channel_2)low_channel_2 = receiver_input_channel_2; if(receiver_input_channel_3 < low_channel_3)low_channel_3 = receiver_input_channel_3; if(receiver_input_channel_4 < low_channel_4)low_channel_4 = receiver_input_channel_4; if(receiver_input_channel_1 > high_channel_1)high_channel_1 = receiver_input_channel_1; if(receiver_input_channel_2 > high_channel_2)high_channel_2 = receiver_input_channel_2; if(receiver_input_channel_3 > high_channel_3)high_channel_3 = receiver_input_channel_3; if(receiver_input_channel_4 > high_channel_4)high_channel_4 = receiver_input_channel_4; delay(100); } } //Check if the angular position of a gyro axis is changing within 10 seconds void check_gyro_axes(byte movement){ byte trigger_axis = 0; float gyro_angle_roll, gyro_angle_pitch, gyro_angle_yaw; //Reset all axes gyro_angle_roll = 0; gyro_angle_pitch = 0; gyro_angle_yaw = 0; gyro_signalen(); timer = millis() + 10000; while(timer > millis() && gyro_angle_roll > -30 && gyro_angle_roll < 30 && gyro_angle_pitch > -30 && gyro_angle_pitch < 30 && gyro_angle_yaw > -30 && gyro_angle_yaw < 30){ gyro_signalen(); if(type == 2 || type == 3){ gyro_angle_roll += gyro_roll * 0.00007; //0.00007 = 17.5 (md/s) / 250(Hz) gyro_angle_pitch += gyro_pitch * 0.00007; gyro_angle_yaw += gyro_yaw * 0.00007; } if(type == 1){ gyro_angle_roll += gyro_roll * 0.0000611; // 0.0000611 = 1 / 65.5 (LSB degr/s) / 250(Hz) gyro_angle_pitch += gyro_pitch * 0.0000611; gyro_angle_yaw += gyro_yaw * 0.0000611; } delayMicroseconds(3700); //Loop is running @ 250Hz. +/-300us is used for communication with the gyro } //Assign the moved axis to the orresponding function (pitch, roll, yaw) if((gyro_angle_roll < -30 || gyro_angle_roll > 30) && gyro_angle_pitch > -30 && gyro_angle_pitch < 30 && gyro_angle_yaw > -30 && gyro_angle_yaw < 30){ gyro_check_byte |= 0b00000001; if(gyro_angle_roll < 0)trigger_axis = 0b10000001; else trigger_axis = 0b00000001; } if((gyro_angle_pitch < -30 || gyro_angle_pitch > 30) && gyro_angle_roll > -30 && gyro_angle_roll < 30 && gyro_angle_yaw > -30 && gyro_angle_yaw < 30){ gyro_check_byte |= 0b00000010; if(gyro_angle_pitch < 0)trigger_axis = 0b10000010; else trigger_axis = 0b00000010; } if((gyro_angle_yaw < -30 || gyro_angle_yaw > 30) && gyro_angle_roll > -30 && gyro_angle_roll < 30 && gyro_angle_pitch > -30 && gyro_angle_pitch < 30){ gyro_check_byte |= 0b00000100; if(gyro_angle_yaw < 0)trigger_axis = 0b10000011; else trigger_axis = 0b00000011; } if(trigger_axis == 0){ error = 1; Serial.println(F("No angular motion is detected in the last 10 seconds!!! (ERROR 4)")); } else if(movement == 1)roll_axis = trigger_axis; if(movement == 2)pitch_axis = trigger_axis; if(movement == 3)yaw_axis = trigger_axis; } //This routine is called every time input 8, 9, 10 or 11 changed state ISR(PCINT0_vect){ current_time = micros(); //Channel 1========================================= if(PINB & B00000001){ //Is input 8 high? if(last_channel_1 == 0){ //Input 8 changed from 0 to 1 last_channel_1 = 1; //Remember current input state timer_1 = current_time; //Set timer_1 to current_time } } else if(last_channel_1 == 1){ //Input 8 is not high and changed from 1 to 0 last_channel_1 = 0; //Remember current input state receiver_input_channel_1 = current_time - timer_1; //Channel 1 is current_time - timer_1 } //Channel 2========================================= if(PINB & B00000010 ){ //Is input 9 high? if(last_channel_2 == 0){ //Input 9 changed from 0 to 1 last_channel_2 = 1; //Remember current input state timer_2 = current_time; //Set timer_2 to current_time } } else if(last_channel_2 == 1){ //Input 9 is not high and changed from 1 to 0 last_channel_2 = 0; //Remember current input state receiver_input_channel_2 = current_time - timer_2; //Channel 2 is current_time - timer_2 } //Channel 3========================================= if(PINB & B00000100 ){ //Is input 10 high? if(last_channel_3 == 0){ //Input 10 changed from 0 to 1 last_channel_3 = 1; //Remember current input state timer_3 = current_time; //Set timer_3 to current_time } } else if(last_channel_3 == 1){ //Input 10 is not high and changed from 1 to 0 last_channel_3 = 0; //Remember current input state receiver_input_channel_3 = current_time - timer_3; //Channel 3 is current_time - timer_3 } //Channel 4========================================= if(PINB & B00001000 ){ //Is input 11 high? if(last_channel_4 == 0){ //Input 11 changed from 0 to 1 last_channel_4 = 1; //Remember current input state timer_4 = current_time; //Set timer_4 to current_time } } else if(last_channel_4 == 1){ //Input 11 is not high and changed from 1 to 0 last_channel_4 = 0; //Remember current input state receiver_input_channel_4 = current_time - timer_4; //Channel 4 is current_time - timer_4 } } //Intro subroutine void intro(){ Serial.println(F("===================================================")); delay(1500); Serial.println(F("")); Serial.println(F("Your")); delay(500); Serial.println(F(" Multicopter")); delay(500); Serial.println(F(" Flight")); delay(500); Serial.println(F(" Controller")); delay(1000); Serial.println(F("")); Serial.println(F("Drone Setup Program")); Serial.println(F("")); Serial.println(F("===================================================")); delay(1500); Serial.println(F("Working...")); Serial.println(F("")); Serial.println(F("Have fun!")); }
Затем откройте скетч DroneSetup. Установите Serial Monitor на 57600 бод и загрузите скетч. Подключите передатчик Flysky до загрузки скетча. Затем следуйте инструкциям в Serial Monitor.
Шаг 5: Балансировка моторов и пропеллеров
Этот шаг критически важен для стабильного полёта дрона. Если пропустить его, пропеллеры не будут стабильно работать, и дрон станет неуправляемым.
Установите пропеллеры на моторы и проверьте, что контрвесочные и часовые пропеллеры находятся в правильных позициях. Загрузите программу ESCCalibrate и откройте Serial Monitor на 57600 бод. Отправьте ‘1’ через Serial Monitor и дождитесь ответа «Test motor 1 (right front CCW)».
ESCCalibrate
//The program will start in calibration mode. //Send the following characters / numbers via the serial monitor to change the mode // //r = print receiver signals. //a = print quadcopter angles. //1 = check rotation / vibrations for motor 1 (right front CCW). //2 = check rotation / vibrations for motor 2 (right rear CW). //3 = check rotation / vibrations for motor 3 (left rear CCW). //4 = check rotation / vibrations for motor 4 (left front CW). //5 = check vibrations for all motors together. #include //Include the Wire.h library so we can communicate with the gyro. #include //Include the EEPROM.h library so we can store information onto the EEPROM //Declaring global variables byte last_channel_1, last_channel_2, last_channel_3, last_channel_4; byte eeprom_data[36], start, data; boolean new_function_request,first_angle; volatile int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3, receiver_input_channel_4; int esc_1, esc_2, esc_3, esc_4; int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4; int receiver_input[5]; int loop_counter, gyro_address, vibration_counter; int temperature; long acc_x, acc_y, acc_z, acc_total_vector[20], acc_av_vector, vibration_total_result; unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4, esc_timer, esc_loop_timer; unsigned long zero_timer, timer_1, timer_2, timer_3, timer_4, current_time; int acc_axis[4], gyro_axis[4]; double gyro_pitch, gyro_roll, gyro_yaw; float angle_roll_acc, angle_pitch_acc, angle_pitch, angle_roll; int cal_int; double gyro_axis_cal[4]; //Setup routine void setup(){ Serial.begin(9600); //Start the serial port. Wire.begin(); //Start the wire library as master TWBR = 12; //Set the I2C clock speed to 400kHz. //Arduino Uno pins default to inputs, so they don't need to be explicitly declared as inputs. DDRD |= B11110000; //Configure digital poort 4, 5, 6 and 7 as output. DDRB |= B00010000; //Configure digital poort 12 as output. PCICR |= (1 << PCIE0); // set PCIE0 to enable PCMSK0 scan. PCMSK0 |= (1 << PCINT0); // set PCINT0 (digital input 8) to trigger an interrupt on state change. PCMSK0 |= (1 << PCINT1); // set PCINT1 (digital input 9)to trigger an interrupt on state change. PCMSK0 |= (1 << PCINT2); // set PCINT2 (digital input 10)to trigger an interrupt on state change. PCMSK0 |= (1 << PCINT3); // set PCINT3 (digital input 11)to trigger an interrupt on state change. for(data = 0; data <= 35; data++)eeprom_data[data] = EEPROM.read(data); //Read EEPROM for faster data access gyro_address = eeprom_data[32]; //Store the gyro address in the variable. set_gyro_registers(); //Set the specific gyro registers. //Check the EEPROM signature to make sure that the setup program is executed. while(eeprom_data[33] != 'J' || eeprom_data[34] != 'M' || eeprom_data[35] != 'B'){ delay(500); //Wait for 500ms. digitalWrite(12, !digitalRead(12)); //Change the led status to indicate error. } wait_for_receiver(); //Wait until the receiver is active. zero_timer = micros(); //Set the zero_timer for the first loop. while(Serial.available())data = Serial.read(); //Empty the serial buffer. data = 0; //Set the data variable back to zero. } //Main program loop void loop(){ while(zero_timer + 4000 > micros()); //Start the pulse after 4000 micro seconds. zero_timer = micros(); //Reset the zero timer. if(Serial.available() > 0){ data = Serial.read(); //Read the incomming byte. delay(100); //Wait for any other bytes to come in while(Serial.available() > 0)loop_counter = Serial.read(); //Empty the Serial buffer. new_function_request = true; //Set the new request flag. loop_counter = 0; //Reset the loop_counter variable. cal_int = 0; //Reset the cal_int variable to undo the calibration. start = 0; //Set start to 0. first_angle = false; //Set first_angle to false. //Confirm the choice on the serial monitor. if(data == 'r')Serial.println("Reading receiver signals."); if(data == 'a')Serial.println("Print the quadcopter angles."); if(data == 'a')Serial.println("Gyro calibration starts in 2 seconds (don't move the quadcopter)."); if(data == '1')Serial.println("Test motor 1 (right front CCW.)"); if(data == '2')Serial.println("Test motor 2 (right rear CW.)"); if(data == '3')Serial.println("Test motor 3 (left rear CCW.)"); if(data == '4')Serial.println("Test motor 4 (left front CW.)"); if(data == '5')Serial.println("Test all motors together"); //Let's create a small delay so the message stays visible for 2.5 seconds. //We don't want the ESC's to beep and have to send a 1000us pulse to the ESC's. for(vibration_counter = 0; vibration_counter < 625; vibration_counter++){ //Do this loop 625 times delay(3); //Wait 3000us. esc_1 = 1000; //Set the pulse for ESC 1 to 1000us. esc_2 = 1000; //Set the pulse for ESC 1 to 1000us. esc_3 = 1000; //Set the pulse for ESC 1 to 1000us. esc_4 = 1000; //Set the pulse for ESC 1 to 1000us. esc_pulse_output(); //Send the ESC control pulses. } vibration_counter = 0; //Reset the vibration_counter variable. } receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual receiver signals for throttle to the standard 1000 - 2000us. if(receiver_input_channel_3 < 1025)new_function_request = false; //If the throttle is in the lowest position set the request flag to false. //////////////////////////////////////////////////////////////////////////////////////////// //Run the ESC calibration program to start with. //////////////////////////////////////////////////////////////////////////////////////////// if(data == 0 && new_function_request == false){ //Only start the calibration mode at first start. receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual receiver signals for throttle to the standard 1000 - 2000us. esc_1 = receiver_input_channel_3; //Set the pulse for motor 1 equal to the throttle channel. esc_2 = receiver_input_channel_3; //Set the pulse for motor 2 equal to the throttle channel. esc_3 = receiver_input_channel_3; //Set the pulse for motor 3 equal to the throttle channel. esc_4 = receiver_input_channel_3; //Set the pulse for motor 4 equal to the throttle channel. esc_pulse_output(); //Send the ESC control pulses. } //////////////////////////////////////////////////////////////////////////////////////////// //When user sends a 'r' print the receiver signals. //////////////////////////////////////////////////////////////////////////////////////////// if(data == 'r'){ loop_counter ++; //Increase the loop_counter variable. receiver_input_channel_1 = convert_receiver_channel(1); //Convert the actual receiver signals for pitch to the standard 1000 - 2000us. receiver_input_channel_2 = convert_receiver_channel(2); //Convert the actual receiver signals for roll to the standard 1000 - 2000us. receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual receiver signals for throttle to the standard 1000 - 2000us. receiver_input_channel_4 = convert_receiver_channel(4); //Convert the actual receiver signals for yaw to the standard 1000 - 2000us. if(loop_counter == 125){ //Print the receiver values when the loop_counter variable equals 250. print_signals(); //Print the receiver values on the serial monitor. loop_counter = 0; //Reset the loop_counter variable. } //For starting the motors: throttle low and yaw left (step 1). if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1050)start = 1; //When yaw stick is back in the center position start the motors (step 2). if(start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450)start = 2; //Stopping the motors: throttle low and yaw right. if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1950)start = 0; esc_1 = 1000; //Set the pulse for ESC 1 to 1000us. esc_2 = 1000; //Set the pulse for ESC 1 to 1000us. esc_3 = 1000; //Set the pulse for ESC 1 to 1000us. esc_4 = 1000; //Set the pulse for ESC 1 to 1000us. esc_pulse_output(); //Send the ESC control pulses. } /////////////////////////////////////////////////////////////////////////////////////////// //When user sends a '1, 2, 3, 4 or 5 test the motors. //////////////////////////////////////////////////////////////////////////////////////////// if(data == '1' || data == '2' || data == '3' || data == '4' || data == '5'){ //If motor 1, 2, 3 or 4 is selected by the user. loop_counter ++; //Add 1 to the loop_counter variable. if(new_function_request == true && loop_counter == 250){ //Wait for the throttle to be set to 0. Serial.print("Set throttle to 1000 (low). It's now set to: "); //Print message on the serial monitor. Serial.println(receiver_input_channel_3); //Print the actual throttle position. loop_counter = 0; //Reset the loop_counter variable. } if(new_function_request == false){ //When the throttle was in the lowest position do this. receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual receiver signals for throttle to the standard 1000 - 2000us. if(data == '1' || data == '5')esc_1 = receiver_input_channel_3; //If motor 1 is requested set the pulse for motor 1 equal to the throttle channel. else esc_1 = 1000; //If motor 1 is not requested set the pulse for the ESC to 1000us (off). if(data == '2' || data == '5')esc_2 = receiver_input_channel_3; //If motor 2 is requested set the pulse for motor 1 equal to the throttle channel. else esc_2 = 1000; //If motor 2 is not requested set the pulse for the ESC to 1000us (off). if(data == '3' || data == '5')esc_3 = receiver_input_channel_3; //If motor 3 is requested set the pulse for motor 1 equal to the throttle channel. else esc_3 = 1000; //If motor 3 is not requested set the pulse for the ESC to 1000us (off). if(data == '4' || data == '5')esc_4 = receiver_input_channel_3; //If motor 4 is requested set the pulse for motor 1 equal to the throttle channel. else esc_4 = 1000; //If motor 4 is not requested set the pulse for the ESC to 1000us (off). esc_pulse_output(); //Send the ESC control pulses. //For balancing the propellors it's possible to use the accelerometer to measure the vibrations. if(eeprom_data[31] == 1){ //The MPU-6050 is installed Wire.beginTransmission(gyro_address); //Start communication with the gyro. Wire.write(0x3B); //Start reading @ register 43h and auto increment with every read. Wire.endTransmission(); //End the transmission. Wire.requestFrom(gyro_address,6); //Request 6 bytes from the gyro. while(Wire.available() < 6); //Wait until the 6 bytes are received. acc_x = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_x variable. acc_y = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_y variable. acc_z = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_z variable. acc_total_vector[0] = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z)); //Calculate the total accelerometer vector. acc_av_vector = acc_total_vector[0]; //Copy the total vector to the accelerometer average vector variable. for(start = 16; start > 0; start--){ //Do this loop 16 times to create an array of accelrometer vectors. acc_total_vector[start] = acc_total_vector[start - 1]; //Shift every variable one position up in the array. acc_av_vector += acc_total_vector[start]; //Add the array value to the acc_av_vector variable. } acc_av_vector /= 17; //Divide the acc_av_vector by 17 to get the avarage total accelerometer vector. if(vibration_counter < 20){ //If the vibration_counter is less than 20 do this. vibration_counter ++; //Increment the vibration_counter variable. vibration_total_result += abs(acc_total_vector[0] - acc_av_vector); //Add the absolute difference between the avarage vector and current vector to the vibration_total_result variable. } else{ vibration_counter = 0; //If the vibration_counter is equal or larger than 20 do this. Serial.println(vibration_total_result/50); //Print the total accelerometer vector divided by 50 on the serial monitor. vibration_total_result = 0; //Reset the vibration_total_result variable. } } } } /////////////////////////////////////////////////////////////////////////////////////////// //When user sends a 'a' display the quadcopter angles. //////////////////////////////////////////////////////////////////////////////////////////// if(data == 'a'){ if(cal_int != 2000){ Serial.print("Calibrating the gyro"); //Let's take multiple gyro data samples so we can determine the average gyro offset (calibration). for (cal_int = 0; cal_int < 2000 ; cal_int ++){ //Take 2000 readings for calibration. if(cal_int % 125 == 0){ digitalWrite(12, !digitalRead(12)); //Change the led status to indicate calibration. Serial.print("."); } gyro_signalen(); //Read the gyro output. gyro_axis_cal[1] += gyro_axis[1]; //Ad roll value to gyro_roll_cal. gyro_axis_cal[2] += gyro_axis[2]; //Ad pitch value to gyro_pitch_cal. gyro_axis_cal[3] += gyro_axis[3]; //Ad yaw value to gyro_yaw_cal. //We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while calibrating the gyro. PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high. delayMicroseconds(1000); //Wait 1000us. PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low. delay(3); //Wait 3 milliseconds before the next loop. } Serial.println("."); //Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset. gyro_axis_cal[1] /= 2000; //Divide the roll total by 2000. gyro_axis_cal[2] /= 2000; //Divide the pitch total by 2000. gyro_axis_cal[3] /= 2000; //Divide the yaw total by 2000. } else{ ///We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while calibrating the gyro. PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high. delayMicroseconds(1000); //Wait 1000us. PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low. //Let's get the current gyro data. gyro_signalen(); //Gyro angle calculations //0.0000611 = 1 / (250Hz / 65.5) angle_pitch += gyro_pitch * 0.0000611; //Calculate the traveled pitch angle and add this to the angle_pitch variable. angle_roll += gyro_roll * 0.0000611; //Calculate the traveled roll angle and add this to the angle_roll variable. //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians angle_pitch -= angle_roll * sin(gyro_yaw * 0.000001066); //If the IMU has yawed transfer the roll angle to the pitch angel. angle_roll += angle_pitch * sin(gyro_yaw * 0.000001066); //If the IMU has yawed transfer the pitch angle to the roll angel. //Accelerometer angle calculations acc_total_vector[0] = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z)); //Calculate the total accelerometer vector. //57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians angle_pitch_acc = asin((float)acc_y/acc_total_vector[0])* 57.296; //Calculate the pitch angle. angle_roll_acc = asin((float)acc_x/acc_total_vector[0])* -57.296; //Calculate the roll angle. if(!first_angle){ angle_pitch = angle_pitch_acc; //Set the pitch angle to the accelerometer angle. angle_roll = angle_roll_acc; //Set the roll angle to the accelerometer angle. first_angle = true; } else{ angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004; //Correct the drift of the gyro pitch angle with the accelerometer pitch angle. angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004; //Correct the drift of the gyro roll angle with the accelerometer roll angle. } //We can't print all the data at once. This takes to long and the angular readings will be off. if(loop_counter == 0)Serial.print("Pitch: "); if(loop_counter == 1)Serial.print(angle_pitch ,0); if(loop_counter == 2)Serial.print(" Roll: "); if(loop_counter == 3)Serial.print(angle_roll ,0); if(loop_counter == 4)Serial.print(" Yaw: "); if(loop_counter == 5)Serial.println(gyro_yaw / 65.5 ,0); loop_counter ++; if(loop_counter == 60)loop_counter = 0; } } } //This routine is called every time input 8, 9, 10 or 11 changed state. ISR(PCINT0_vect){ current_time = micros(); //Channel 1========================================= if(PINB & B00000001){ //Is input 8 high? if(last_channel_1 == 0){ //Input 8 changed from 0 to 1. last_channel_1 = 1; //Remember current input state. timer_1 = current_time; //Set timer_1 to current_time. } } else if(last_channel_1 == 1){ //Input 8 is not high and changed from 1 to 0. last_channel_1 = 0; //Remember current input state. receiver_input[1] = current_time - timer_1; //Channel 1 is current_time - timer_1. } //Channel 2========================================= if(PINB & B00000010 ){ //Is input 9 high? if(last_channel_2 == 0){ //Input 9 changed from 0 to 1. last_channel_2 = 1; //Remember current input state. timer_2 = current_time; //Set timer_2 to current_time. } } else if(last_channel_2 == 1){ //Input 9 is not high and changed from 1 to 0. last_channel_2 = 0; //Remember current input state. receiver_input[2] = current_time - timer_2; //Channel 2 is current_time - timer_2. } //Channel 3========================================= if(PINB & B00000100 ){ //Is input 10 high? if(last_channel_3 == 0){ //Input 10 changed from 0 to 1. last_channel_3 = 1; //Remember current input state. timer_3 = current_time; //Set timer_3 to current_time. } } else if(last_channel_3 == 1){ //Input 10 is not high and changed from 1 to 0. last_channel_3 = 0; //Remember current input state. receiver_input[3] = current_time - timer_3; //Channel 3 is current_time - timer_3. } //Channel 4========================================= if(PINB & B00001000 ){ //Is input 11 high? if(last_channel_4 == 0){ //Input 11 changed from 0 to 1. last_channel_4 = 1; //Remember current input state. timer_4 = current_time; //Set timer_4 to current_time. } } else if(last_channel_4 == 1){ //Input 11 is not high and changed from 1 to 0. last_channel_4 = 0; //Remember current input state. receiver_input[4] = current_time - timer_4; //Channel 4 is current_time - timer_4. } } //Checck if the receiver values are valid within 10 seconds void wait_for_receiver(){ byte zero = 0; //Set all bits in the variable zero to 0 while(zero < 15){ //Stay in this loop until the 4 lowest bits are set if(receiver_input[1] < 2100 && receiver_input[1] > 900)zero |= 0b00000001; //Set bit 0 if the receiver pulse 1 is within the 900 - 2100 range if(receiver_input[2] < 2100 && receiver_input[2] > 900)zero |= 0b00000010; //Set bit 1 if the receiver pulse 2 is within the 900 - 2100 range if(receiver_input[3] < 2100 && receiver_input[3] > 900)zero |= 0b00000100; //Set bit 2 if the receiver pulse 3 is within the 900 - 2100 range if(receiver_input[4] < 2100 && receiver_input[4] > 900)zero |= 0b00001000; //Set bit 3 if the receiver pulse 4 is within the 900 - 2100 range delay(500); //Wait 500 milliseconds } } //This part converts the actual receiver signals to a standardized 1000 – 1500 – 2000 microsecond value. //The stored data in the EEPROM is used. int convert_receiver_channel(byte function){ byte channel, reverse; //First we declare some local variables int low, center, high, actual; int difference; channel = eeprom_data[function + 23] & 0b00000111; //What channel corresponds with the specific function if(eeprom_data[function + 23] & 0b10000000)reverse = 1; //Reverse channel when most significant bit is set else reverse = 0; //If the most significant is not set there is no reverse actual = receiver_input[channel]; //Read the actual receiver value for the corresponding function low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14]; //Store the low value for the specific receiver input channel center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center value for the specific receiver input channel high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6]; //Store the high value for the specific receiver input channel if(actual < center){ //The actual receiver value is lower than the center value if(actual < low)actual = low; //Limit the lowest value to the value that was detected during setup difference = ((long)(center - actual) * (long)500) / (center - low); //Calculate and scale the actual value to a 1000 - 2000us value if(reverse == 1)return 1500 + difference; //If the channel is reversed else return 1500 - difference; //If the channel is not reversed } else if(actual > center){ //The actual receiver value is higher than the center value if(actual > high)actual = high; //Limit the lowest value to the value that was detected during setup difference = ((long)(actual - center) * (long)500) / (high - center); //Calculate and scale the actual value to a 1000 - 2000us value if(reverse == 1)return 1500 - difference; //If the channel is reversed else return 1500 + difference; //If the channel is not reversed } else return 1500; } void print_signals(){ Serial.print("Start:"); Serial.print(start); Serial.print(" Roll:"); if(receiver_input_channel_1 - 1480 < 0)Serial.print("<<<"); else if(receiver_input_channel_1 - 1520 > 0)Serial.print(">>>"); else Serial.print("-+-"); Serial.print(receiver_input_channel_1); Serial.print(" Pitch:"); if(receiver_input_channel_2 - 1480 < 0)Serial.print("^^^"); else if(receiver_input_channel_2 - 1520 > 0)Serial.print("vvv"); else Serial.print("-+-"); Serial.print(receiver_input_channel_2); Serial.print(" Throttle:"); if(receiver_input_channel_3 - 1480 < 0)Serial.print("vvv"); else if(receiver_input_channel_3 - 1520 > 0)Serial.print("^^^"); else Serial.print("-+-"); Serial.print(receiver_input_channel_3); Serial.print(" Yaw:"); if(receiver_input_channel_4 - 1480 < 0)Serial.print("<<<"); else if(receiver_input_channel_4 - 1520 > 0)Serial.print(">>>"); else Serial.print("-+-"); Serial.println(receiver_input_channel_4); } void esc_pulse_output(){ zero_timer = micros(); PORTD |= B11110000; //Set port 4, 5, 6 and 7 high at once timer_channel_1 = esc_1 + zero_timer; //Calculate the time when digital port 4 is set low. timer_channel_2 = esc_2 + zero_timer; //Calculate the time when digital port 5 is set low. timer_channel_3 = esc_3 + zero_timer; //Calculate the time when digital port 6 is set low. timer_channel_4 = esc_4 + zero_timer; //Calculate the time when digital port 7 is set low. while(PORTD >= 16){ //Execute the loop until digital port 4 to 7 is low. esc_loop_timer = micros(); //Check the current time. if(timer_channel_1 <= esc_loop_timer)PORTD &= B11101111; //When the delay time is expired, digital port 4 is set low. if(timer_channel_2 <= esc_loop_timer)PORTD &= B11011111; //When the delay time is expired, digital port 5 is set low. if(timer_channel_3 <= esc_loop_timer)PORTD &= B10111111; //When the delay time is expired, digital port 6 is set low. if(timer_channel_4 <= esc_loop_timer)PORTD &= B01111111; //When the delay time is expired, digital port 7 is set low. } } void set_gyro_registers(){ //Setup the MPU-6050 if(eeprom_data[31] == 1){ Wire.beginTransmission(gyro_address); //Start communication with the address found during search. Wire.write(0x6B); //We want to write to the PWR_MGMT_1 register (6B hex) Wire.write(0x00); //Set the register bits as 00000000 to activate the gyro Wire.endTransmission(); //End the transmission with the gyro. Wire.beginTransmission(gyro_address); //Start communication with the address found during search. Wire.write(0x1B); //We want to write to the GYRO_CONFIG register (1B hex) Wire.write(0x08); //Set the register bits as 00001000 (500dps full scale) Wire.endTransmission(); //End the transmission with the gyro Wire.beginTransmission(gyro_address); //Start communication with the address found during search. Wire.write(0x1C); //We want to write to the ACCEL_CONFIG register (1A hex) Wire.write(0x10); //Set the register bits as 00010000 (+/- 8g full scale range) Wire.endTransmission(); //End the transmission with the gyro //Let's perform a random register check to see if the values are written correct Wire.beginTransmission(gyro_address); //Start communication with the address found during search Wire.write(0x1B); //Start reading @ register 0x1B Wire.endTransmission(); //End the transmission Wire.requestFrom(gyro_address, 1); //Request 1 bytes from the gyro while(Wire.available() < 1); //Wait until the 6 bytes are received if(Wire.read() != 0x08){ //Check if the value is 0x08 digitalWrite(12,HIGH); //Turn on the warning led while(1)delay(10); //Stay in this loop for ever } Wire.beginTransmission(gyro_address); //Start communication with the address found during search Wire.write(0x1A); //We want to write to the CONFIG register (1A hex) Wire.write(0x03); //Set the register bits as 00000011 (Set Digital Low Pass Filter to ~43Hz) Wire.endTransmission(); //End the transmission with the gyro } } void gyro_signalen(){ //Read the MPU-6050 if(eeprom_data[31] == 1){ Wire.beginTransmission(gyro_address); //Start communication with the gyro. Wire.write(0x3B); //Start reading @ register 43h and auto increment with every read. Wire.endTransmission(); //End the transmission. Wire.requestFrom(gyro_address,14); //Request 14 bytes from the gyro. while(Wire.available() < 14); //Wait until the 14 bytes are received. acc_axis[1] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_x variable. acc_axis[2] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_y variable. acc_axis[3] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_z variable. temperature = Wire.read()<<8|Wire.read(); //Add the low and high byte to the temperature variable. gyro_axis[1] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data. gyro_axis[2] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data. gyro_axis[3] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data. } if(cal_int == 2000){ gyro_axis[1] -= gyro_axis_cal[1]; //Only compensate after the calibration. gyro_axis[2] -= gyro_axis_cal[2]; //Only compensate after the calibration. gyro_axis[3] -= gyro_axis_cal[3]; //Only compensate after the calibration. } gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011]; //Set gyro_roll to the correct axis that was stored in the EEPROM. if(eeprom_data[28] & 0b10000000)gyro_roll *= -1; //Invert gyro_roll if the MSB of EEPROM bit 28 is set. gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011]; //Set gyro_pitch to the correct axis that was stored in the EEPROM. if(eeprom_data[29] & 0b10000000)gyro_pitch *= -1; //Invert gyro_pitch if the MSB of EEPROM bit 29 is set. gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011]; //Set gyro_yaw to the correct axis that was stored in the EEPROM. if(eeprom_data[30] & 0b10000000)gyro_yaw *= -1; //Invert gyro_yaw if the MSB of EEPROM bit 30 is set. acc_x = acc_axis[eeprom_data[29] & 0b00000011]; //Set acc_x to the correct axis that was stored in the EEPROM. if(eeprom_data[29] & 0b10000000)acc_x *= -1; //Invert acc_x if the MSB of EEPROM bit 29 is set. acc_y = acc_axis[eeprom_data[28] & 0b00000011]; //Set acc_y to the correct axis that was stored in the EEPROM. if(eeprom_data[28] & 0b10000000)acc_y *= -1; //Invert acc_y if the MSB of EEPROM bit 28 is set. acc_z = acc_axis[eeprom_data[30] & 0b00000011]; //Set acc_z to the correct axis that was stored in the EEPROM. if(eeprom_data[30] & 0b10000000)acc_z *= -1; //Invert acc_z if the MSB of EEPROM bit 30 is set. }
Числа на экране представляют собой количество вибраций, измеренных акселерометром. Держите раму мотора крепко в руках и увеличивайте дроссель до половины. Проверьте числа на экране и запомните вибрации, которые ощущаете рукой.
Шаг 6: Программирование дрона. Часть 2
Этот шаг легко выполнить. Скачайте скетч FlightController и загрузите его в дрон. Затем отключите дрон и подключите аккумулятор. Вы должны услышать серию звуков «Beep beep beep BEEEEP!». Если слышите этот набор, всё в порядке. Если нет, значит, вы неправильно очистили EEPROM.
FlightController
#include //Include the Wire.h library so we can communicate with the gyro. #include //Include the EEPROM.h library so we can store information onto the EEPROM /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //PID gain and limit settings /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// float pid_p_gain_roll = 1.3; //Gain setting for the roll P-controller float pid_i_gain_roll = 0.04; //Gain setting for the roll I-controller float pid_d_gain_roll = 18.0; //Gain setting for the roll D-controller int pid_max_roll = 400; //Maximum output of the PID-controller (+/-) float pid_p_gain_pitch = pid_p_gain_roll; //Gain setting for the pitch P-controller. float pid_i_gain_pitch = pid_i_gain_roll; //Gain setting for the pitch I-controller. float pid_d_gain_pitch = pid_d_gain_roll; //Gain setting for the pitch D-controller. int pid_max_pitch = pid_max_roll; //Maximum output of the PID-controller (+/-) float pid_p_gain_yaw = 4.0; //Gain setting for the pitch P-controller. //4.0 float pid_i_gain_yaw = 0.02; //Gain setting for the pitch I-controller. //0.02 float pid_d_gain_yaw = 0.0; //Gain setting for the pitch D-controller. int pid_max_yaw = 400; //Maximum output of the PID-controller (+/-) boolean auto_level = true; //Auto level on (true) or off (false) /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Declaring global variables /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// byte last_channel_1, last_channel_2, last_channel_3, last_channel_4; byte eeprom_data[36]; byte highByte, lowByte; volatile int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3, receiver_input_channel_4; int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4, loop_counter; int esc_1, esc_2, esc_3, esc_4; int throttle, battery_voltage; int cal_int, start, gyro_address; int receiver_input[5]; int temperature; int acc_axis[4], gyro_axis[4]; float roll_level_adjust, pitch_level_adjust; long acc_x, acc_y, acc_z, acc_total_vector; unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4, esc_timer, esc_loop_timer; unsigned long timer_1, timer_2, timer_3, timer_4, current_time; unsigned long loop_timer; double gyro_pitch, gyro_roll, gyro_yaw; double gyro_axis_cal[4]; float pid_error_temp; float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, pid_output_roll, pid_last_roll_d_error; float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, pid_output_pitch, pid_last_pitch_d_error; float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, pid_output_yaw, pid_last_yaw_d_error; float angle_roll_acc, angle_pitch_acc, angle_pitch, angle_roll; boolean gyro_angles_set; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Setup routine /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void setup(){ //Serial.begin(57600); //Copy the EEPROM data for fast access data. for(start = 0; start <= 35; start++)eeprom_data[start] = EEPROM.read(start); start = 0; //Set start back to zero. gyro_address = eeprom_data[32]; //Store the gyro address in the variable. Wire.begin(); //Start the I2C as master. TWBR = 12; //Set the I2C clock speed to 400kHz. //Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs. DDRD |= B11110000; //Configure digital poort 4, 5, 6 and 7 as output. DDRB |= B00110000; //Configure digital poort 12 and 13 as output. //Use the led on the Arduino for startup indication. digitalWrite(12,HIGH); //Turn on the warning led. //Check the EEPROM signature to make sure that the setup program is executed. while(eeprom_data[33] != 'J' || eeprom_data[34] != 'M' || eeprom_data[35] != 'B')delay(10); //The flight controller needs the MPU-6050 with gyro and accelerometer //If setup is completed without MPU-6050 stop the flight controller program if(eeprom_data[31] == 2 || eeprom_data[31] == 3)delay(10); set_gyro_registers(); //Set the specific gyro registers. for (cal_int = 0; cal_int < 1250 ; cal_int ++){ //Wait 5 seconds before continuing. PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high. delayMicroseconds(1000); //Wait 1000us. PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low. delayMicroseconds(3000); //Wait 3000us. } //Let's take multiple gyro data samples so we can determine the average gyro offset (calibration). for (cal_int = 0; cal_int < 2000 ; cal_int ++){ //Take 2000 readings for calibration. if(cal_int % 15 == 0)digitalWrite(12, !digitalRead(12)); //Change the led status to indicate calibration. gyro_signalen(); //Read the gyro output. gyro_axis_cal[1] += gyro_axis[1]; //Ad roll value to gyro_roll_cal. gyro_axis_cal[2] += gyro_axis[2]; //Ad pitch value to gyro_pitch_cal. gyro_axis_cal[3] += gyro_axis[3]; //Ad yaw value to gyro_yaw_cal. //We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while calibrating the gyro. PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high. delayMicroseconds(1000); //Wait 1000us. PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low. delay(3); //Wait 3 milliseconds before the next loop. } //Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset. gyro_axis_cal[1] /= 2000; //Divide the roll total by 2000. gyro_axis_cal[2] /= 2000; //Divide the pitch total by 2000. gyro_axis_cal[3] /= 2000; //Divide the yaw total by 2000. PCICR |= (1 << PCIE0); //Set PCIE0 to enable PCMSK0 scan. PCMSK0 |= (1 << PCINT0); //Set PCINT0 (digital input 8) to trigger an interrupt on state change. PCMSK0 |= (1 << PCINT1); //Set PCINT1 (digital input 9)to trigger an interrupt on state change. PCMSK0 |= (1 << PCINT2); //Set PCINT2 (digital input 10)to trigger an interrupt on state change. PCMSK0 |= (1 << PCINT3); //Set PCINT3 (digital input 11)to trigger an interrupt on state change. //Wait until the receiver is active and the throtle is set to the lower position. while(receiver_input_channel_3 < 990 || receiver_input_channel_3 > 1020 || receiver_input_channel_4 < 1400){ receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual receiver signals for throttle to the standard 1000 - 2000us receiver_input_channel_4 = convert_receiver_channel(4); //Convert the actual receiver signals for yaw to the standard 1000 - 2000us start ++; //While waiting increment start whith every loop. //We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while waiting for the receiver inputs. PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high. delayMicroseconds(1000); //Wait 1000us. PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low. delay(3); //Wait 3 milliseconds before the next loop. if(start == 125){ //Every 125 loops (500ms). digitalWrite(12, !digitalRead(12)); //Change the led status. start = 0; //Start again at 0. } } start = 0; //Set start back to 0. //Load the battery voltage to the battery_voltage variable. //65 is the voltage compensation for the diode. //12.6V equals ~5V @ Analog 0. //12.6V equals 1023 analogRead(0). //1260 / 1023 = 1.2317. //The variable battery_voltage holds 1050 if the battery voltage is 10.5V. battery_voltage = (analogRead(0) + 65) * 1.2317; loop_timer = micros(); //Set the timer for the next loop. //When everything is done, turn off the led. digitalWrite(12,LOW); //Turn off the warning led. } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Main program loop /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void loop(){ //65.5 = 1 deg/sec (check the datasheet of the MPU-6050 for more information). gyro_roll_input = (gyro_roll_input * 0.7) + ((gyro_roll / 65.5) * 0.3); //Gyro pid input is deg/sec. gyro_pitch_input = (gyro_pitch_input * 0.7) + ((gyro_pitch / 65.5) * 0.3);//Gyro pid input is deg/sec. gyro_yaw_input = (gyro_yaw_input * 0.7) + ((gyro_yaw / 65.5) * 0.3); //Gyro pid input is deg/sec. //Gyro angle calculations //0.0000611 = 1 / (250Hz / 65.5) angle_pitch += gyro_pitch * 0.0000611; //Calculate the traveled pitch angle and add this to the angle_pitch variable. angle_roll += gyro_roll * 0.0000611; //Calculate the traveled roll angle and add this to the angle_roll variable. //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians angle_pitch -= angle_roll * sin(gyro_yaw * 0.000001066); //If the IMU has yawed transfer the roll angle to the pitch angel. angle_roll += angle_pitch * sin(gyro_yaw * 0.000001066); //If the IMU has yawed transfer the pitch angle to the roll angel. //Accelerometer angle calculations acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z)); //Calculate the total accelerometer vector. if(abs(acc_y) < acc_total_vector){ //Prevent the asin function to produce a NaN angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296; //Calculate the pitch angle. } if(abs(acc_x) < acc_total_vector){ //Prevent the asin function to produce a NaN angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296; //Calculate the roll angle. } //Place the MPU-6050 spirit level and note the values in the following two lines for calibration. angle_pitch_acc -= 0.0; //Accelerometer calibration value for pitch. angle_roll_acc -= 0.0; //Accelerometer calibration value for roll. angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004; //Correct the drift of the gyro pitch angle with the accelerometer pitch angle. angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004; //Correct the drift of the gyro roll angle with the accelerometer roll angle. pitch_level_adjust = angle_pitch * 15; //Calculate the pitch angle correction roll_level_adjust = angle_roll * 15; //Calculate the roll angle correction if(!auto_level){ //If the quadcopter is not in auto-level mode pitch_level_adjust = 0; //Set the pitch angle correction to zero. roll_level_adjust = 0; //Set the roll angle correcion to zero. } //For starting the motors: throttle low and yaw left (step 1). if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1050)start = 1; //When yaw stick is back in the center position start the motors (step 2). if(start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450){ start = 2; angle_pitch = angle_pitch_acc; //Set the gyro pitch angle equal to the accelerometer pitch angle when the quadcopter is started. angle_roll = angle_roll_acc; //Set the gyro roll angle equal to the accelerometer roll angle when the quadcopter is started. gyro_angles_set = true; //Set the IMU started flag. //Reset the PID controllers for a bumpless start. pid_i_mem_roll = 0; pid_last_roll_d_error = 0; pid_i_mem_pitch = 0; pid_last_pitch_d_error = 0; pid_i_mem_yaw = 0; pid_last_yaw_d_error = 0; } //Stopping the motors: throttle low and yaw right. if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1950)start = 0; //The PID set point in degrees per second is determined by the roll receiver input. //In the case of deviding by 3 the max roll rate is aprox 164 degrees per second ( (500-8)/3 = 164d/s ). pid_roll_setpoint = 0; //We need a little dead band of 16us for better results. if(receiver_input_channel_1 > 1508)pid_roll_setpoint = receiver_input_channel_1 - 1508; else if(receiver_input_channel_1 < 1492)pid_roll_setpoint = receiver_input_channel_1 - 1492; pid_roll_setpoint -= roll_level_adjust; //Subtract the angle correction from the standardized receiver roll input value. pid_roll_setpoint /= 3.0; //Divide the setpoint for the PID roll controller by 3 to get angles in degrees. //The PID set point in degrees per second is determined by the pitch receiver input. //In the case of deviding by 3 the max pitch rate is aprox 164 degrees per second ( (500-8)/3 = 164d/s ). pid_pitch_setpoint = 0; //We need a little dead band of 16us for better results. if(receiver_input_channel_2 > 1508)pid_pitch_setpoint = receiver_input_channel_2 - 1508; else if(receiver_input_channel_2 < 1492)pid_pitch_setpoint = receiver_input_channel_2 - 1492; pid_pitch_setpoint -= pitch_level_adjust; //Subtract the angle correction from the standardized receiver pitch input value. pid_pitch_setpoint /= 3.0; //Divide the setpoint for the PID pitch controller by 3 to get angles in degrees. //The PID set point in degrees per second is determined by the yaw receiver input. //In the case of deviding by 3 the max yaw rate is aprox 164 degrees per second ( (500-8)/3 = 164d/s ). pid_yaw_setpoint = 0; //We need a little dead band of 16us for better results. if(receiver_input_channel_3 > 1050){ //Do not yaw when turning off the motors. if(receiver_input_channel_4 > 1508)pid_yaw_setpoint = (receiver_input_channel_4 - 1508)/3.0; else if(receiver_input_channel_4 < 1492)pid_yaw_setpoint = (receiver_input_channel_4 - 1492)/3.0; } calculate_pid(); //PID inputs are known. So we can calculate the pid output. //The battery voltage is needed for compensation. //A complementary filter is used to reduce noise. //0.09853 = 0.08 * 1.2317. battery_voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 0.09853; //Turn on the led if battery voltage is to low. if(battery_voltage < 1000 && battery_voltage > 600)digitalWrite(12, HIGH); throttle = receiver_input_channel_3; //We need the throttle signal as a base signal. if (start == 2){ //The motors are started. if (throttle > 1800) throttle = 1800; //We need some room to keep full control at full throttle. esc_1 = throttle - pid_output_pitch + pid_output_roll - pid_output_yaw; //Calculate the pulse for esc 1 (front-right - CCW) esc_2 = throttle + pid_output_pitch + pid_output_roll + pid_output_yaw; //Calculate the pulse for esc 2 (rear-right - CW) esc_3 = throttle + pid_output_pitch - pid_output_roll - pid_output_yaw; //Calculate the pulse for esc 3 (rear-left - CCW) esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw; //Calculate the pulse for esc 4 (front-left - CW) if (battery_voltage < 1240 && battery_voltage > 800){ //Is the battery connected? esc_1 += esc_1 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-1 pulse for voltage drop. esc_2 += esc_2 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-2 pulse for voltage drop. esc_3 += esc_3 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-3 pulse for voltage drop. esc_4 += esc_4 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-4 pulse for voltage drop. } if (esc_1 < 1100) esc_1 = 1100; //Keep the motors running. if (esc_2 < 1100) esc_2 = 1100; //Keep the motors running. if (esc_3 < 1100) esc_3 = 1100; //Keep the motors running. if (esc_4 < 1100) esc_4 = 1100; //Keep the motors running. if(esc_1 > 2000)esc_1 = 2000; //Limit the esc-1 pulse to 2000us. if(esc_2 > 2000)esc_2 = 2000; //Limit the esc-2 pulse to 2000us. if(esc_3 > 2000)esc_3 = 2000; //Limit the esc-3 pulse to 2000us. if(esc_4 > 2000)esc_4 = 2000; //Limit the esc-4 pulse to 2000us. } else{ esc_1 = 1000; //If start is not 2 keep a 1000us pulse for ess-1. esc_2 = 1000; //If start is not 2 keep a 1000us pulse for ess-2. esc_3 = 1000; //If start is not 2 keep a 1000us pulse for ess-3. esc_4 = 1000; //If start is not 2 keep a 1000us pulse for ess-4. } //! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! //Because of the angle calculation the loop time is getting very important. If the loop time is //longer or shorter than 4000us the angle calculation is off. If you modify the code make sure //that the loop time is still 4000us and no longer! More information can be found on //the Q&A page: //! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! if(micros() - loop_timer > 4050)digitalWrite(12, HIGH); //Turn on the LED if the loop time exceeds 4050us. //All the information for controlling the motor's is available. //The refresh rate is 250Hz. That means the esc's need there pulse every 4ms. while(micros() - loop_timer < 4000); //We wait until 4000us are passed. loop_timer = micros(); //Set the timer for the next loop. PORTD |= B11110000; //Set digital outputs 4,5,6 and 7 high. timer_channel_1 = esc_1 + loop_timer; //Calculate the time of the faling edge of the esc-1 pulse. timer_channel_2 = esc_2 + loop_timer; //Calculate the time of the faling edge of the esc-2 pulse. timer_channel_3 = esc_3 + loop_timer; //Calculate the time of the faling edge of the esc-3 pulse. timer_channel_4 = esc_4 + loop_timer; //Calculate the time of the faling edge of the esc-4 pulse. //There is always 1000us of spare time. So let's do something usefull that is very time consuming. //Get the current gyro and receiver data and scale it to degrees per second for the pid calculations. gyro_signalen(); while(PORTD >= 16){ //Stay in this loop until output 4,5,6 and 7 are low. esc_loop_timer = micros(); //Read the current time. if(timer_channel_1 <= esc_loop_timer)PORTD &= B11101111; //Set digital output 4 to low if the time is expired. if(timer_channel_2 <= esc_loop_timer)PORTD &= B11011111; //Set digital output 5 to low if the time is expired. if(timer_channel_3 <= esc_loop_timer)PORTD &= B10111111; //Set digital output 6 to low if the time is expired. if(timer_channel_4 <= esc_loop_timer)PORTD &= B01111111; //Set digital output 7 to low if the time is expired. } } ISR(PCINT0_vect){ current_time = micros(); //Channel 1========================================= if(PINB & B00000001){ //Is input 8 high? if(last_channel_1 == 0){ //Input 8 changed from 0 to 1. last_channel_1 = 1; //Remember current input state. timer_1 = current_time; //Set timer_1 to current_time. } } else if(last_channel_1 == 1){ //Input 8 is not high and changed from 1 to 0. last_channel_1 = 0; //Remember current input state. receiver_input[1] = current_time - timer_1; //Channel 1 is current_time - timer_1. } //Channel 2========================================= if(PINB & B00000010 ){ //Is input 9 high? if(last_channel_2 == 0){ //Input 9 changed from 0 to 1. last_channel_2 = 1; //Remember current input state. timer_2 = current_time; //Set timer_2 to current_time. } } else if(last_channel_2 == 1){ //Input 9 is not high and changed from 1 to 0. last_channel_2 = 0; //Remember current input state. receiver_input[2] = current_time - timer_2; //Channel 2 is current_time - timer_2. } //Channel 3========================================= if(PINB & B00000100 ){ //Is input 10 high? if(last_channel_3 == 0){ //Input 10 changed from 0 to 1. last_channel_3 = 1; //Remember current input state. timer_3 = current_time; //Set timer_3 to current_time. } } else if(last_channel_3 == 1){ //Input 10 is not high and changed from 1 to 0. last_channel_3 = 0; //Remember current input state. receiver_input[3] = current_time - timer_3; //Channel 3 is current_time - timer_3. } //Channel 4========================================= if(PINB & B00001000 ){ //Is input 11 high? if(last_channel_4 == 0){ //Input 11 changed from 0 to 1. last_channel_4 = 1; //Remember current input state. timer_4 = current_time; //Set timer_4 to current_time. } } else if(last_channel_4 == 1){ //Input 11 is not high and changed from 1 to 0. last_channel_4 = 0; //Remember current input state. receiver_input[4] = current_time - timer_4; //Channel 4 is current_time - timer_4. } } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //Subroutine for reading the gyro /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void gyro_signalen(){ //Read the MPU-6050 if(eeprom_data[31] == 1){ Wire.beginTransmission(gyro_address); //Start communication with the gyro. Wire.write(0x3B); //Start reading @ register 43h and auto increment with every read. Wire.endTransmission(); //End the transmission. Wire.requestFrom(gyro_address,14); //Request 14 bytes from the gyro. receiver_input_channel_1 = convert_receiver_channel(1); //Convert the actual receiver signals for pitch to the standard 1000 - 2000us. receiver_input_channel_2 = convert_receiver_channel(2); //Convert the actual receiver signals for roll to the standard 1000 - 2000us. receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual receiver signals for throttle to the standard 1000 - 2000us. receiver_input_channel_4 = convert_receiver_channel(4); //Convert the actual receiver signals for yaw to the standard 1000 - 2000us. while(Wire.available() < 14); //Wait until the 14 bytes are received. acc_axis[1] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_x variable. acc_axis[2] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_y variable. acc_axis[3] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_z variable. temperature = Wire.read()<<8|Wire.read(); //Add the low and high byte to the temperature variable. gyro_axis[1] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data. gyro_axis[2] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data. gyro_axis[3] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data. } if(cal_int == 2000){ gyro_axis[1] -= gyro_axis_cal[1]; //Only compensate after the calibration. gyro_axis[2] -= gyro_axis_cal[2]; //Only compensate after the calibration. gyro_axis[3] -= gyro_axis_cal[3]; //Only compensate after the calibration. } gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011]; //Set gyro_roll to the correct axis that was stored in the EEPROM. if(eeprom_data[28] & 0b10000000)gyro_roll *= -1; //Invert gyro_roll if the MSB of EEPROM bit 28 is set. gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011]; //Set gyro_pitch to the correct axis that was stored in the EEPROM. if(eeprom_data[29] & 0b10000000)gyro_pitch *= -1; //Invert gyro_pitch if the MSB of EEPROM bit 29 is set. gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011]; //Set gyro_yaw to the correct axis that was stored in the EEPROM. if(eeprom_data[30] & 0b10000000)gyro_yaw *= -1; //Invert gyro_yaw if the MSB of EEPROM bit 30 is set. acc_x = acc_axis[eeprom_data[29] & 0b00000011]; //Set acc_x to the correct axis that was stored in the EEPROM. if(eeprom_data[29] & 0b10000000)acc_x *= -1; //Invert acc_x if the MSB of EEPROM bit 29 is set. acc_y = acc_axis[eeprom_data[28] & 0b00000011]; //Set acc_y to the correct axis that was stored in the EEPROM. if(eeprom_data[28] & 0b10000000)acc_y *= -1; //Invert acc_y if the MSB of EEPROM bit 28 is set. acc_z = acc_axis[eeprom_data[30] & 0b00000011]; //Set acc_z to the correct axis that was stored in the EEPROM. if(eeprom_data[30] & 0b10000000)acc_z *= -1; //Invert acc_z if the MSB of EEPROM bit 30 is set. } void calculate_pid(){ //Roll calculations pid_error_temp = gyro_roll_input - pid_roll_setpoint; pid_i_mem_roll += pid_i_gain_roll * pid_error_temp; if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll; else if(pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = pid_max_roll * -1; pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll + pid_d_gain_roll * (pid_error_temp - pid_last_roll_d_error); if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll; else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = pid_max_roll * -1; pid_last_roll_d_error = pid_error_temp; //Pitch calculations pid_error_temp = gyro_pitch_input - pid_pitch_setpoint; pid_i_mem_pitch += pid_i_gain_pitch * pid_error_temp; if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = pid_max_pitch; else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = pid_max_pitch * -1; pid_output_pitch = pid_p_gain_pitch * pid_error_temp + pid_i_mem_pitch + pid_d_gain_pitch * (pid_error_temp - pid_last_pitch_d_error); if(pid_output_pitch > pid_max_pitch)pid_output_pitch = pid_max_pitch; else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = pid_max_pitch * -1; pid_last_pitch_d_error = pid_error_temp; //Yaw calculations pid_error_temp = gyro_yaw_input - pid_yaw_setpoint; pid_i_mem_yaw += pid_i_gain_yaw * pid_error_temp; if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw; else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = pid_max_yaw * -1; pid_output_yaw = pid_p_gain_yaw * pid_error_temp + pid_i_mem_yaw + pid_d_gain_yaw * (pid_error_temp - pid_last_yaw_d_error); if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw; else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = pid_max_yaw * -1; pid_last_yaw_d_error = pid_error_temp; } //This part converts the actual receiver signals to a standardized 1000 – 1500 – 2000 microsecond value. //The stored data in the EEPROM is used. int convert_receiver_channel(byte function){ byte channel, reverse; //First we declare some local variables int low, center, high, actual; int difference; channel = eeprom_data[function + 23] & 0b00000111; //What channel corresponds with the specific function if(eeprom_data[function + 23] & 0b10000000)reverse = 1; //Reverse channel when most significant bit is set else reverse = 0; //If the most significant is not set there is no reverse actual = receiver_input[channel]; //Read the actual receiver value for the corresponding function low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14]; //Store the low value for the specific receiver input channel center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center value for the specific receiver input channel high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6]; //Store the high value for the specific receiver input channel if(actual < center){ //The actual receiver value is lower than the center value if(actual < low)actual = low; //Limit the lowest value to the value that was detected during setup difference = ((long)(center - actual) * (long)500) / (center - low); //Calculate and scale the actual value to a 1000 - 2000us value if(reverse == 1)return 1500 + difference; //If the channel is reversed else return 1500 - difference; //If the channel is not reversed } else if(actual > center){ //The actual receiver value is higher than the center value if(actual > high)actual = high; //Limit the lowest value to the value that was detected during setup difference = ((long)(actual - center) * (long)500) / (high - center); //Calculate and scale the actual value to a 1000 - 2000us value if(reverse == 1)return 1500 - difference; //If the channel is reversed else return 1500 + difference; //If the channel is not reversed } else return 1500; } void set_gyro_registers(){ //Setup the MPU-6050 if(eeprom_data[31] == 1){ Wire.beginTransmission(gyro_address); //Start communication with the address found during search. Wire.write(0x6B); //We want to write to the PWR_MGMT_1 register (6B hex) Wire.write(0x00); //Set the register bits as 00000000 to activate the gyro Wire.endTransmission(); //End the transmission with the gyro. Wire.beginTransmission(gyro_address); //Start communication with the address found during search. Wire.write(0x1B); //We want to write to the GYRO_CONFIG register (1B hex) Wire.write(0x08); //Set the register bits as 00001000 (500dps full scale) Wire.endTransmission(); //End the transmission with the gyro Wire.beginTransmission(gyro_address); //Start communication with the address found during search. Wire.write(0x1C); //We want to write to the ACCEL_CONFIG register (1A hex) Wire.write(0x10); //Set the register bits as 00010000 (+/- 8g full scale range) Wire.endTransmission(); //End the transmission with the gyro //Let's perform a random register check to see if the values are written correct Wire.beginTransmission(gyro_address); //Start communication with the address found during search Wire.write(0x1B); //Start reading @ register 0x1B Wire.endTransmission(); //End the transmission Wire.requestFrom(gyro_address, 1); //Request 1 bytes from the gyro while(Wire.available() < 1); //Wait until the 6 bytes are received if(Wire.read() != 0x08){ //Check if the value is 0x08 digitalWrite(12,HIGH); //Turn on the warning led while(1)delay(10); //Stay in this loop for ever } Wire.beginTransmission(gyro_address); //Start communication with the address found during search Wire.write(0x1A); //We want to write to the CONFIG register (1A hex) Wire.write(0x03); //Set the register bits as 00000011 (Set Digital Low Pass Filter to ~43Hz) Wire.endTransmission(); //End the transmission with the gyro } }
Шаг 7: Полёт дрона
Сначала разместите дрон на ровной и открытой площадке. Затем выполните следующие шаги:
- Подключите аккумулятор дрона. Вы должны услышать упомянутые ранее звуки.
- Включите FlySky. Убедитесь, что батарея заряжена, и устройство чистое от грязи.
- Быстро нажмите стик рыскания влево, чтобы активировать дрон (специфично для этого дрона).
- Моторы дрона должны равномерно увеличивать обороты до 10% дросселя. Дрон не должен взлетать.
- Установите стик дросселя в центральное положение (50% мощности). Дрон должен взлететь и зависнуть на высоте 5 футов.
- Отпустите все управления. Дрон должен зависнуть стабильно и не улетать как пуля.
Заключение
Это был самый масштабный проект, который я когда-либо создавал, и это чудесно. Надеюсь, вам понравилось строить и летать на этом дроне вместе со мной! Увидимся в следующий раз!
Часто задаваемые вопросы
- Сколько времени занимает сборка дрона? — Сборка дрона может занять от нескольких часов до нескольких дней в зависимости от вашего опыта и доступности всех необходимых компонентов.
- Что делать, если дрон не стабилен в полёте? — Проверьте балансировку пропеллеров и моторов, убедитесь, что всё собрано правильно и все компоненты работают.
- Могу ли я использовать другие компоненты, отличные от указанных? — В идеале, используйте именно те компоненты, которые указаны, но если не получается, выбирайте максимально близкие по характеристикам аналоги.
- Как долго дрон может оставаться в воздухе на одной зарядке? — Время полёта дрона на одной зарядке зависит от ёмкости аккумулятора и конфигурации дрона, в среднем это может быть от 10 до 20 минут.
- Что делать, если у меня возникли проблемы с программированием? — Проверьте все подключения, следуйте инструкциям внимательно и, если проблемы не решаются, обратитесь за помощью в комментариях или на форумах.
Гизмо, Индия